Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement and Gated Fusion

Cheng Chen, Qi Dou, Yueming Jin, Hao Chen, Jing Qin, Pheng Ann Heng

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

115 Citations (Scopus)

Abstract

Accurate medical image segmentation commonly requires effective learning of the complementary information from multimodal data. However, in clinical practice, we often encounter the problem of missing imaging modalities. We tackle this challenge and propose a novel multimodal segmentation framework which is robust to the absence of imaging modalities. Our network uses feature disentanglement to decompose the input modalities into the modality-specific appearance code, which uniquely sticks to each modality, and the modality-invariant content code, which absorbs multimodal information for the segmentation task. With enhanced modality-invariance, the disentangled content code from each modality is fused into a shared representation which gains robustness to missing data. The fusion is achieved via a learning-based strategy to gate the contribution of different modalities at different locations. We validate our method on the important yet challenging multimodal brain tumor segmentation task with the BRATS challenge dataset. With competitive performance to the state-of-the-art approaches for full modality, our method achieves outstanding robustness under various missing modality(ies) situations, significantly exceeding the state-of-the-art method by over in average for Dice on whole tumor segmentation.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
EditorsDinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
PublisherSpringer Science and Business Media Deutschland GmbH
Pages447-456
Number of pages10
ISBN (Print)9783030322472
DOIs
Publication statusPublished - 2019
Event22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, China
Duration: 13 Oct 201917 Oct 2019

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11766 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
Country/TerritoryChina
CityShenzhen
Period13/10/1917/10/19

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement and Gated Fusion'. Together they form a unique fingerprint.

Cite this