Abstract
This paper reviews existing approaches to the airport gate assignment problem (AGAP) and presents an optimization model for the problem considering operational safety constraints. The main objective is to minimize the dispersion of gate idle time periods (to get robust optimization) while ensuring appropriate matching between the size of each aircraft and its assigned gate type and avoiding the potential hazard caused by gate apron operational conflict. Genetic algorithm is adopted to solve the problem. An illustrative example is given to show the effectiveness and efficiency of the algorithm. The algorithm performance is further demonstrated using data of a terminal from Beijing Capital International Airport (PEK).
Original language | English |
---|---|
Pages (from-to) | 31-41 |
Number of pages | 11 |
Journal | International Journal of Automation and Computing |
Volume | 13 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Feb 2016 |
Keywords
- conflict avoidance
- Gate assignment problem
- genetic algorithm
- operational safety constraints
- robust optimization
ASJC Scopus subject areas
- Control and Systems Engineering
- Modelling and Simulation
- Computer Science Applications
- Applied Mathematics