rLSTM-AE for dimension reduction and its application to active learning-based dynamic reliability analysis

Yu Zhang, You Dong, Michael Beer

Research output: Journal article publicationJournal articleAcademic researchpeer-review

Abstract

A novel method termed rLSTM-AE is developed for the low-dimensional latent space identification of the stochastic dynamic systems with more than 1000 input random variables and the active learning-based dynamic reliability analysis. First, the long short-term memory network considers both the time-variant stochastic excitation and the time-invariant random variables is developed (rLSTM), which adopts the time-series excitation as the pertinent input feature and makes it available for the metamodeling of the high-dimensional stochastic dynamic systems. To circumvent the insufficient accuracy of deep neural networks for reliability analysis results from the limited observations, autoencoder (AE) is incorporated with the rLSTM (rLSTM-AE) and utilized to decompose the approximate extreme value space found by rLSTM onto a low-dimensional latent space. The dimension of the latent space is adaptively determined by a Gaussian process regression reconstruction error, which enables the Gaussian process regression with the similar accuracy as rLSTM regarding the extreme responses prediction. The proposed rLSTM-AE conducts the low-dimensional features extraction from the perspective of the output space decomposition and considers the time-dependent property of the dynamic systems. Finally, the detected latent variables can be combined with the active learning-based Gaussian process regression for the high-dimensional dynamic reliability analysis. One single-degree-of-freedom system and a reinforced concrete frame structure subjected to the stochastic excitation are investigated to validate the performance of the proposed method.

Original languageEnglish
Article number111426
JournalMechanical Systems and Signal Processing
Volume215
DOIs
Publication statusPublished - 1 Jun 2024

Keywords

  • High dimension
  • Latent space
  • Metamodel
  • Reliability analysis
  • Stochastic dynamic system

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Signal Processing
  • Civil and Structural Engineering
  • Aerospace Engineering
  • Mechanical Engineering
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'rLSTM-AE for dimension reduction and its application to active learning-based dynamic reliability analysis'. Together they form a unique fingerprint.

Cite this