RippleNet: Propagating user preferences on the knowledge graph for recommender systems

Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao Zhao, Wenjie Li, Xing Xie, Minyi Guo

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

909 Citations (Scopus)

Abstract

To address the sparsity and cold start problem of collaborative filtering, researchers usually make use of side information, such as social networks or item attributes, to improve recommendation performance. This paper considers the knowledge graph as the source of side information. To address the limitations of existing embedding-based and path-based methods for knowledge-graph-aware recommendation, we propose RippleNet, an end-to-end framework that naturally incorporates the knowledge graph into recommender systems. Similar to actual ripples propagating on the water, RippleNet stimulates the propagation of user preferences over the set of knowledge entities by automatically and iteratively extending a user's potential interests along links in the knowledge graph. The multiple "ripples" activated by a user's historically clicked items are thus superposed to form the preference distribution of the user with respect to a candidate item, which could be used for predicting the final clicking probability. Through extensive experiments on real-world datasets, we demonstrate that RippleNet achieves substantial gains in a variety of scenarios, including movie, book and news recommendation, over several state-of-the-art baselines.

Original languageEnglish
Title of host publicationCIKM 2018 - Proceedings of the 27th ACM International Conference on Information and Knowledge Management
EditorsNorman Paton, Selcuk Candan, Haixun Wang, James Allan, Rakesh Agrawal, Alexandros Labrinidis, Alfredo Cuzzocrea, Mohammed Zaki, Divesh Srivastava, Andrei Broder, Assaf Schuster
PublisherAssociation for Computing Machinery
Pages417-426
Number of pages10
ISBN (Electronic)9781450360142
DOIs
Publication statusPublished - 17 Oct 2018
Event27th ACM International Conference on Information and Knowledge Management, CIKM 2018 - Torino, Italy
Duration: 22 Oct 201826 Oct 2018

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings

Conference

Conference27th ACM International Conference on Information and Knowledge Management, CIKM 2018
Country/TerritoryItaly
CityTorino
Period22/10/1826/10/18

Keywords

  • Knowledge graph
  • Preference propagation
  • Recommender systems

ASJC Scopus subject areas

  • General Business,Management and Accounting
  • General Decision Sciences

Fingerprint

Dive into the research topics of 'RippleNet: Propagating user preferences on the knowledge graph for recommender systems'. Together they form a unique fingerprint.

Cite this