Retrieve, rerank and rewrite: Soft template based neural summarization

Ziqiang Cao, Wenjie Li, Furu Wei, Sujian Li

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

76 Citations (Scopus)

Abstract

Most previous seq2seq summarization systems purely depend on the source text to generate summaries, which tends to work unstably. Inspired by the traditional template-based summarization approaches, this paper proposes to use existing summaries as soft templates to guide the seq2seq model. To this end, we use a popular IR platform to Retrieve proper summaries as candidate templates. Then, we extend the seq2seq framework to jointly conduct template Reranking and template-aware summary generation (Rewriting). Experiments show that, in terms of informativeness, our model significantly outperforms the state-of-the-art methods, and even soft templates themselves demonstrate high competitiveness. In addition, the import of high-quality external summaries improves the stability and readability of generated summaries.

Original languageEnglish
Title of host publicationACL 2018 - 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers)
PublisherAssociation for Computational Linguistics (ACL)
Pages152-161
Number of pages10
ISBN (Electronic)9781948087322
Publication statusPublished - 1 Jan 2018
Event56th Annual Meeting of the Association for Computational Linguistics, ACL 2018 - Melbourne, Australia
Duration: 15 Jul 201820 Jul 2018

Publication series

NameACL 2018 - 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers)
Volume1

Conference

Conference56th Annual Meeting of the Association for Computational Linguistics, ACL 2018
Country/TerritoryAustralia
CityMelbourne
Period15/07/1820/07/18

ASJC Scopus subject areas

  • Software
  • Computational Theory and Mathematics

Cite this