Retrieve, rerank and rewrite: Soft template based neural summarization

Ziqiang Cao, Wenjie Li, Furu Wei, Sujian Li

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

61 Citations (Scopus)

Abstract

Most previous seq2seq summarization systems purely depend on the source text to generate summaries, which tends to work unstably. Inspired by the traditional template-based summarization approaches, this paper proposes to use existing summaries as soft templates to guide the seq2seq model. To this end, we use a popular IR platform to Retrieve proper summaries as candidate templates. Then, we extend the seq2seq framework to jointly conduct template Reranking and template-aware summary generation (Rewriting). Experiments show that, in terms of informativeness, our model significantly outperforms the state-of-the-art methods, and even soft templates themselves demonstrate high competitiveness. In addition, the import of high-quality external summaries improves the stability and readability of generated summaries.

Original languageEnglish
Title of host publicationACL 2018 - 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers)
PublisherAssociation for Computational Linguistics (ACL)
Pages152-161
Number of pages10
ISBN (Electronic)9781948087322
Publication statusPublished - 1 Jan 2018
Event56th Annual Meeting of the Association for Computational Linguistics, ACL 2018 - Melbourne, Australia
Duration: 15 Jul 201820 Jul 2018

Publication series

NameACL 2018 - 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers)
Volume1

Conference

Conference56th Annual Meeting of the Association for Computational Linguistics, ACL 2018
CountryAustralia
CityMelbourne
Period15/07/1820/07/18

ASJC Scopus subject areas

  • Software
  • Computational Theory and Mathematics

Cite this