Responsible Visual Editing

Minheng Ni, Yeli Shen, Lei Zhang, Wangmeng Zuo

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

Abstract

With the recent advancements in visual synthesis, there is a growing risk of encountering synthesized images with detrimental effects, such as hate, discrimination, and privacy violations. Unfortunately, it remains unexplored on how to avoid synthesizing harmful images and convert them into responsible ones. In this paper, we present responsible visual editing, which edits risky concepts within an image to more responsible ones with minimal content changes. However, the concepts that need to be edited are often abstract, making them hard to be located and edited. To tackle these challenges, we propose a Cognitive Editor (CoEditor) by harnessing the large multimodal models through a two-stage cognitive process: (1) a perceptual cognitive process to locate what to be edited and (2) a behavioral cognitive process to strategize how to edit. To mitigate the negative implications of harmful images on research, we build a transparent and public dataset, namely AltBear, which expresses harmful information using teddy bears instead of humans. Experiments demonstrate that CoEditor can effectively comprehend abstract concepts in complex scenes, significantly surpassing the baseline models for responsible visual editing. Moreover, we find that the AltBear dataset corresponds well to the harmful content found in real images, providing a safe and effective benchmark for future research. Our source code and dataset can be found at https://github.com/kodenii/Responsible-Visual-Editing.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2024 - 18th European Conference, Proceedings
EditorsAleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, Gül Varol
PublisherSpringer Science and Business Media Deutschland GmbH
Pages314-330
Number of pages17
ISBN (Print)9783031726699
DOIs
Publication statusPublished - 2025
Event18th European Conference on Computer Vision, ECCV 2024 - Milan, Italy
Duration: 29 Sept 20244 Oct 2024

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume15080 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference18th European Conference on Computer Vision, ECCV 2024
Country/TerritoryItaly
CityMilan
Period29/09/244/10/24

Keywords

  • Image editing
  • Large multimodal model
  • Responsible visual editing

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Responsible Visual Editing'. Together they form a unique fingerprint.

Cite this