Response surface modeling and optimization scheme of an internally cooled liquid desiccant air conditioning system

Yanling Zhang, Hao Zhang, Hongxing Yang, Yi Chen, Chun Wah Leung

Research output: Journal article publicationJournal articleAcademic researchpeer-review

12 Citations (Scopus)

Abstract

Applying an internally cooled liquid desiccant air conditioning system (LDAC) is a promising energy-saving and emission-reduction scheme for hot and humid areas. This research investigates the application of an internally cooled LDAC for performance enhancement in hot and humid areas like Hong Kong. The combined system integrates liquid desiccant dehumidification (LDD) and regenerative indirect evaporative cooling (RIEC) without a power-intensive compressor. The internally cooled LDD removes latent heat from the hot and humid air before the RIEC cools it. To ensure efficient energy utilization, the LDD captures the exhaust air to assist in the dehumidification and initial cooling of the fresh air, which alleviates the efficiency deterioration of the desiccant. An all-fresh air system is used for better indoor air quality. To optimize the performance of a system with many influencing parameters, the response surface method (RSM) and multi-objective optimization are used to optimize and assess the potential and performance of the system. The system cooling capacity (C), latent heat removal rate (Qd), and dehumidification efficiency (ηd) are used as the optimization objectives. The response surface model and desirability function approach optimize six critical parameters, achieving a 7.6% improvement in dehumidification performance with low airspeed (1.5 m/s) and high desiccant concentration (40%) during high-humidity months. Increasing the extraction ratio of the RIEC by 20% in warmer months enhances the peak cooling capacity by 23.6%. This research contributes to implementing internally cooled LDAC systems and provides insights into optimizing monthly operation patterns in hot and humid regions.

Original languageEnglish
Article number107371
JournalJournal of Building Engineering
Volume76
DOIs
Publication statusPublished - 1 Oct 2023

Keywords

  • Indirect evaporative cooling
  • Liquid desiccant dehumidification
  • Response surface method
  • System optimization

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Architecture
  • Building and Construction
  • Safety, Risk, Reliability and Quality
  • Mechanics of Materials

Fingerprint

Dive into the research topics of 'Response surface modeling and optimization scheme of an internally cooled liquid desiccant air conditioning system'. Together they form a unique fingerprint.

Cite this