Response adjustable performance of a visco-elastomer sandwich plate with harmonic parameters and distributed supported masses under random loading

Zhi Gang Ruan, Zu Guang Ying, Yi Qing Ni

Research output: Journal article publicationJournal articleAcademic researchpeer-review

Abstract

Vibration control of composite structures with distributed masses under random loadings is a significant issue. Adjustability of dynamic characteristics including response spectrum peaks and valleys is important for structural vibration control. The vibration control design in space contains structure and conformation designs which combination results in periodic composite structures. In the present paper, spatial periodicity control design is proposed. Stochastic response adjustable performance of a visco-elastomer sandwich plate with harmonic distribution of geometrical and physical parameters and distributed supported masses under random base motion loading is studied. Both facial layer thickness and core layer modulus of the sandwich plate are considered as harmonic distribution in length and width directions as well as periodically distributed masses. Partial differential equations of coupling motions of the sandwich plate system are derived and converted into ordinary differential equations for multi-mode coupling vibration. Generalized stiffness, damping, and mass coefficients are functions of the harmonic distribution parameters. An analysis solution with frequency response function and response spectral density expressions of the sandwich plate system is obtained. Numerical results are given to show the response adjustable performance through the harmonic geometrical and physical parameters and distributed masses. The results have a potential application to stochastic vibration control or dynamic optimization design of smart composite structure systems.

Original languageEnglish
JournalMeasurement and Control (United Kingdom)
DOIs
Publication statusAccepted/In press - 2022

Keywords

  • analysis solution
  • distributed supported masses
  • harmonic distribution parameters
  • Random vibration
  • response spectrum
  • sandwich plate
  • visco-elastomer core

ASJC Scopus subject areas

  • Instrumentation
  • Control and Optimization
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Response adjustable performance of a visco-elastomer sandwich plate with harmonic parameters and distributed supported masses under random loading'. Together they form a unique fingerprint.

Cite this