Abstract
To improve the robustness and reliability of multi-sensor navigation and reduce the uncertainties and complexity of sensor management in challenging environment, a resilient interactive sensor-independent-update (ISIU) method is proposed. Inspired by the interactive cooperation theory, the contributions can be divided into two aspects. Firstly the priority of trust of navigation sensors is introduced into the information fusion in the form of transition probability matrix defined by Markov chain. Secondly every observable sensor is integrated with the propagated system in an elemental filter with sensor-independent-update structure. The multi-sensor integration is implemented in state estimation domain enhanced by interactive information fusion rather than in measurement domain implemented in traditional filter method. The overall estimation is determined by the weighted sum of average from every filter estimate. This weight of every model is dynamic updated by the prior transition information and posterior model likelihood. The same independent structure is also applied to adopt new available sensor to realize plug-and-play navigation. The kinematic vehicle experiment in sub-urban and urban canyon environment verified the superiority of the proposed method. The ISIU method shows better accuracy and reliability compared to classical Kalman filters. The introduction of priority of sensors and decoupled measurement update process make it robust and insensitive to sensor measurement noise and outliers. The interactive sensor-independent-update structure has the natural function of fault detection and exclusion without additional operations. The effect of dynamic sensor selection is achieved in this processing. The proposed ISIU method is pretty suitable for resilient navigation in challenging environments.
Original language | English |
---|---|
Pages (from-to) | 16433-16447 |
Number of pages | 15 |
Journal | IEEE Transactions on Intelligent Transportation Systems |
Volume | 23 |
Issue number | 9 |
Early online date | 23 Feb 2022 |
DOIs | |
Publication status | Published - 1 Sept 2022 |
Keywords
- Interactive multi-model
- Kalman filter
- multi-sensor integration
- plug and play
- resilient navigation
- sensor selection.
ASJC Scopus subject areas
- Automotive Engineering
- Mechanical Engineering
- Computer Science Applications