TY - JOUR
T1 - Reprogrammable meta-hologram for optical encryption
AU - Qu, Geyang
AU - Yang, Wenhong
AU - Song, Qinghai
AU - Liu, Yilin
AU - Qiu, Cheng Wei
AU - Han, Jiecai
AU - Tsai, Din Ping
AU - Xiao, Shumin
N1 - Funding Information:
This research was supported by the National Key Research and Development Project (Grant No. 2018YFB2200403), National Natural Science Foundation of China (Grant Nos. 11974092, 91850204, 11934012, and 61975041), Shenzhen Fundamental research projects (Grant No. JCYJ20180507184613841, JCYJ20180507183532343, and JCYJ20180306172041577), Shenzhen engineering laboratory on organic–inorganic perovskite devices, and the Fundamental Research Funds for the Central Universities. The authors also acknowledge financial support from Shenzhen Science and Technology Innovation Commission (No. SGDX2019081623281169). The authors are grateful to the Department of Electronic and Information Engineering, The Hong Kong Polytechnic University for their support as well.
Publisher Copyright:
© 2020, The Author(s).
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/12/1
Y1 - 2020/12/1
N2 - Meta-holographic encryption is a potentially important technique for information security. Despite rapid progresses in multi-tasked meta-holograms, the number of information channels available in metasurfaces is limited, making meta-holographic encryption vulnerable to some attacking algorithms. Herein, we demonstrate a re-programmable metasurface that can produce arbitrary holographic images for optical encryption. The encrypted information is divided into two matrices. These two matrices are imposed to the incident light and the metasurface, respectively. While the all-dielectric metasurface is static, the phase matrix of incident light provides additional degrees of freedom to precisely control the eventual functions at will. With a single Si metasurface, arbitrary holographic images and videos have been transported and decrypted. We hope that this work paves a more promising way to optical information encryption and authentication.
AB - Meta-holographic encryption is a potentially important technique for information security. Despite rapid progresses in multi-tasked meta-holograms, the number of information channels available in metasurfaces is limited, making meta-holographic encryption vulnerable to some attacking algorithms. Herein, we demonstrate a re-programmable metasurface that can produce arbitrary holographic images for optical encryption. The encrypted information is divided into two matrices. These two matrices are imposed to the incident light and the metasurface, respectively. While the all-dielectric metasurface is static, the phase matrix of incident light provides additional degrees of freedom to precisely control the eventual functions at will. With a single Si metasurface, arbitrary holographic images and videos have been transported and decrypted. We hope that this work paves a more promising way to optical information encryption and authentication.
UR - http://www.scopus.com/inward/record.url?scp=85094673201&partnerID=8YFLogxK
U2 - 10.1038/s41467-020-19312-9
DO - 10.1038/s41467-020-19312-9
M3 - Journal article
C2 - 33127918
AN - SCOPUS:85094673201
SN - 2041-1723
VL - 11
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 5484
ER -