Abstract
In this paper, we show that the largest signless Laplacian H-eigenvalue of a connected k-uniform hypergraph G, where k≥3, reaches its upper bound 2Δ(G), where Δ(G) is the largest degree of G, if and only if G is regular. Thus the largest Laplacian H-eigenvalue of G, reaches the same upper bound, if and only if G is regular and odd-bipartite. We show that an s-cycle G, as a k-uniform hypergraph, where 1≤s≤k-1, is regular if and only if there is a positive integer q such that k=q(k-s). We show that an even-uniform s-path and an even-uniform non-regular s-cycle are always odd-bipartite. We prove that a regular s-cycle G with k=q(k-s) is odd-bipartite if and only if m is a multiple of 2t0, where m is the number of edges in G, and q=2t0(2l0+1) for some integerst0andl0. We identify the value of the largest signless Laplacian H-eigenvalue of an s-cycle G in all possible cases. When G is odd-bipartite, this is also its largest Laplacian H-eigenvalue. We introduce supervertices for hypergraphs, and show the components of a Laplacian H-eigenvector of an odd-uniform hypergraph are equal if such components correspond vertices in the same supervertex, and the corresponding Laplacian H-eigenvalue is not equal to the degree of the supervertex. Using this property, we show that the largest Laplacian H-eigenvalue of an odd-uniform generalized loose s-cycle G is equal to Δ(G)=2. We also show that the largest Laplacian H-eigenvalue of a k-uniform tight s-cycle G is not less than Δ(G)+1, if the number of vertices is even and k=4l+3 for some nonnegative integer l.
Original language | English |
---|---|
Pages (from-to) | 215-227 |
Number of pages | 13 |
Journal | Linear Algebra and Its Applications |
Volume | 443 |
DOIs | |
Publication status | Published - 15 Feb 2014 |
Keywords
- H-eigenvalue
- Laplacian
- Loose cycle
- Loose path
- Regular uniform hypergraph
- Tight cycle
- Tight path
ASJC Scopus subject areas
- Algebra and Number Theory
- Numerical Analysis
- Geometry and Topology
- Discrete Mathematics and Combinatorics