TY - JOUR
T1 - Reduced graphene oxide-coated carbonized cotton fabric wearable strain sensors with ultralow detection limit
AU - Liu, Qing Qing
AU - Zhang, Yue
AU - Li, Ang
AU - Ren, Erhui
AU - Cui, Ce
AU - Zhou, Mi
AU - Guo, Ronghui
AU - Xiao, Hongyan
AU - Jiang, Shouxiang
AU - Qin, Wenfeng
N1 - Funding Information:
This work was financially supported by Undergraduate Innovation and Entrepreneurship Project (No. T2020108612) and The National Natural Science Foundation of China, The Civil Aviation Administration of China (No. U1833118).
Funding Information:
This work was financially supported by Undergraduate Innovation and Entrepreneurship Project (No. T2020108612) and The National Natural Science Foundation of China, The Civil Aviation Administration of China (No. U1833118).
Publisher Copyright:
© 2020, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2020/10
Y1 - 2020/10
N2 - The booming prosperity of strain sensors promotes the regeneration of wearable electronics. However, strain sensors featured with both large workable range and superb sensitivity are still less than satisfaction. Softness and practicality are also of vital importance for wearable electronics. In this work, a flexible wearable strain sensor based on carbonized cotton fabric coated with reduced graphene oxide (rGO) through polydopamine (rGO/PDA/CCF) modification was fabricated, which exhibits fascinating electrical mechanical performance including a large workable range and superb sensitivity. rGO/PDA/CCF was characterized using scanning electron microscopy (SEM), Raman scattering spectroscopy, and X-ray diffraction (XRD) patterns. The electromechanical performance of the rGO/PDA/CCF strain sensor was evaluated. The strain sensors of rGO/PDA/CCF exhibit a large workable strain range (0–120%) and superb sensitivity with strong durability over 800 cycles. The rGO/PDA/CCF strain sensor has a low detection limit down to 0.01% with a good gauge factor (GF) of 132 within the strain range of 0–1%, and also displays fantastic property in terms of sensitivity in other workable range (GF of 26 and 8 within in a strain range of 1–30% and 30–60%, respectively). rGO/PDA/CCF strain sensor was then applied to track the signal of human motions in real time. rGO/PDA/CCF flexible strain sensor can be utilized in detecting almost all human motions with various dimensions. Additionally, the hydrophobicity and the stability at different temperatures endow the rGO/PDA/CCF strain sensor with high efficiency in various usage, which shows its potential for application in health monitor and wearable electronics.
AB - The booming prosperity of strain sensors promotes the regeneration of wearable electronics. However, strain sensors featured with both large workable range and superb sensitivity are still less than satisfaction. Softness and practicality are also of vital importance for wearable electronics. In this work, a flexible wearable strain sensor based on carbonized cotton fabric coated with reduced graphene oxide (rGO) through polydopamine (rGO/PDA/CCF) modification was fabricated, which exhibits fascinating electrical mechanical performance including a large workable range and superb sensitivity. rGO/PDA/CCF was characterized using scanning electron microscopy (SEM), Raman scattering spectroscopy, and X-ray diffraction (XRD) patterns. The electromechanical performance of the rGO/PDA/CCF strain sensor was evaluated. The strain sensors of rGO/PDA/CCF exhibit a large workable strain range (0–120%) and superb sensitivity with strong durability over 800 cycles. The rGO/PDA/CCF strain sensor has a low detection limit down to 0.01% with a good gauge factor (GF) of 132 within the strain range of 0–1%, and also displays fantastic property in terms of sensitivity in other workable range (GF of 26 and 8 within in a strain range of 1–30% and 30–60%, respectively). rGO/PDA/CCF strain sensor was then applied to track the signal of human motions in real time. rGO/PDA/CCF flexible strain sensor can be utilized in detecting almost all human motions with various dimensions. Additionally, the hydrophobicity and the stability at different temperatures endow the rGO/PDA/CCF strain sensor with high efficiency in various usage, which shows its potential for application in health monitor and wearable electronics.
UR - http://www.scopus.com/inward/record.url?scp=85089980872&partnerID=8YFLogxK
U2 - 10.1007/s10854-020-04278-7
DO - 10.1007/s10854-020-04278-7
M3 - Journal article
AN - SCOPUS:85089980872
SN - 0957-4522
VL - 31
SP - 17233
EP - 17248
JO - Journal of Materials Science: Materials in Electronics
JF - Journal of Materials Science: Materials in Electronics
IS - 20
ER -