Record high performance of perovskite/crystalline silicon four-terminal tandem solar cells

Zhiwei Ren, Jixiang Zhou, Annie Ng, Qian Shen, Hui Shen, Charles Surya

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

Abstract

Perovskite and crystalline silicon (c-Si) with complementary absorption spectra are connected in a 4-terminal-tandem configuration for efficient utilization of the photons from the complete solar spectrum. A highly transparent electrode with low resistivity is developed by the deposition of molybdenum trioxide (MoO3)/Gold (Au)/ molybdenum trioxide (MoO3) multilayer. The thickness of constituent layer of the electrode is carefully controlled to achieve the highest light transmissivity to enhance the absorption of the bottom cell. Perovskite films with low density of bandgap states are obtained by oxygen post-deposition treatment. A record power conversion efficiency (PCE) of 23.6% for tandem device is achieved comparing to 18.1% and 19.1% of transparent perovskite solar cell and c-Si solar cell operated individually.

Original languageEnglish
Title of host publication2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2614-2617
Number of pages4
ISBN (Electronic)9781509056057
Publication statusPublished - Jun 2017
Event44th IEEE Photovoltaic Specialist Conference, PVSC 2017 - Washington, United States
Duration: 25 Jun 201730 Jun 2017

Publication series

Name2017 IEEE 44th Photovoltaic Specialist Conference, PVSC 2017

Conference

Conference44th IEEE Photovoltaic Specialist Conference, PVSC 2017
Country/TerritoryUnited States
CityWashington
Period25/06/1730/06/17

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Electrical and Electronic Engineering
  • Electronic, Optical and Magnetic Materials

Fingerprint

Dive into the research topics of 'Record high performance of perovskite/crystalline silicon four-terminal tandem solar cells'. Together they form a unique fingerprint.

Cite this