TY - JOUR
T1 - Reconfigurable optical-force-drive chirp and delay line in micro- or nanofiber Bragg grating
AU - Luo, Wei
AU - Xu, Fei
AU - Lu, Yan Qing
N1 - Publisher Copyright:
©2015 American Physical Society.
PY - 2015/5/18
Y1 - 2015/5/18
N2 - The emergence of optical micro- or nanofibers (MNFs) with subwavelength diameter, which have ultralight mass and an intense light field, provides an opportunity for developing fiber-based optomechanical systems. In this study we show theoretically an optomechanical effect in silica MNF Bragg gratings (MNFBGs). The light-induced mechanical effect results in continuously distributed strain along the grating and the power-related strain introduces an optically reconfigurable chirp in the grating period. We develop optomechanical coupled-mode equations and analyze theoretically the influence of the optical-force-induced nonlinearity and chirp on the grating performance. Compared with the weak Kerr effect, the optomechanical effect dominates in the properties' evolution of MNFBGs. Significant group-velocity reduction and switching effect have been demonstrated theoretically at medium power level. This kind of optomechanical MNFBG with optically reconfigurable chirp may offer a path toward an all-optical tunable bandwidth of Bragg resonance and may lead to useful applications such as all-optical switching, optically controlled dispersion, and slow or fast light.
AB - The emergence of optical micro- or nanofibers (MNFs) with subwavelength diameter, which have ultralight mass and an intense light field, provides an opportunity for developing fiber-based optomechanical systems. In this study we show theoretically an optomechanical effect in silica MNF Bragg gratings (MNFBGs). The light-induced mechanical effect results in continuously distributed strain along the grating and the power-related strain introduces an optically reconfigurable chirp in the grating period. We develop optomechanical coupled-mode equations and analyze theoretically the influence of the optical-force-induced nonlinearity and chirp on the grating performance. Compared with the weak Kerr effect, the optomechanical effect dominates in the properties' evolution of MNFBGs. Significant group-velocity reduction and switching effect have been demonstrated theoretically at medium power level. This kind of optomechanical MNFBG with optically reconfigurable chirp may offer a path toward an all-optical tunable bandwidth of Bragg resonance and may lead to useful applications such as all-optical switching, optically controlled dispersion, and slow or fast light.
UR - http://www.scopus.com/inward/record.url?scp=84930221754&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.91.053831
DO - 10.1103/PhysRevA.91.053831
M3 - Journal article
AN - SCOPUS:84930221754
SN - 1050-2947
VL - 91
JO - Physical Review A - Atomic, Molecular, and Optical Physics
JF - Physical Review A - Atomic, Molecular, and Optical Physics
IS - 5
M1 - 053831
ER -