TY - GEN
T1 - Reconfigurable multi-slot antenna for bio-medical applications
AU - Huitema, Laure
AU - Wong, Hang
AU - Lin, Wei
AU - Crunteanu, Aurelian
N1 - Publisher Copyright:
© 2016 European Association of Antennas and Propagation.
PY - 2016/5/31
Y1 - 2016/5/31
N2 - We present a polarization- reconfigurable multislot antenna with four switchable linear polarizations (as 0°, ± 45° and 90°) for implant communications. The design is based on four bow-tie shaped slots acting as radiators etched on a circular metallization plane with 45° rotated sequential arrangements. RF switches based on PIN diodes are connected across each slot in order to modify the radiators polarization. We apply a differential source to feed the slot antenna through a ground-tapered Balun. In order to obtain a broadside radiation pattern, a reflector is placed at the quarter-wave distance below the radiator. Measured results are showing that the realized multi-slot antenna can generate four switchable linear polarization states with wide bandwidth and stable gain. This polarization diversity feature makes the proposed antenna highly attractive for implant and body-centric wireless communication systems for minimizing the multi-path distortion and polarization mismatching in the wireless channels.
AB - We present a polarization- reconfigurable multislot antenna with four switchable linear polarizations (as 0°, ± 45° and 90°) for implant communications. The design is based on four bow-tie shaped slots acting as radiators etched on a circular metallization plane with 45° rotated sequential arrangements. RF switches based on PIN diodes are connected across each slot in order to modify the radiators polarization. We apply a differential source to feed the slot antenna through a ground-tapered Balun. In order to obtain a broadside radiation pattern, a reflector is placed at the quarter-wave distance below the radiator. Measured results are showing that the realized multi-slot antenna can generate four switchable linear polarization states with wide bandwidth and stable gain. This polarization diversity feature makes the proposed antenna highly attractive for implant and body-centric wireless communication systems for minimizing the multi-path distortion and polarization mismatching in the wireless channels.
KW - body-centric communication system
KW - Linear polarization reconfigurable antenna
KW - PIN diodes
KW - slot antenna
UR - http://www.scopus.com/inward/record.url?scp=84979272571&partnerID=8YFLogxK
U2 - 10.1109/EuCAP.2016.7481209
DO - 10.1109/EuCAP.2016.7481209
M3 - Conference article published in proceeding or book
AN - SCOPUS:84979272571
T3 - 2016 10th European Conference on Antennas and Propagation, EuCAP 2016
SP - 1
EP - 4
BT - 2016 10th European Conference on Antennas and Propagation, EuCAP 2016
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 10th European Conference on Antennas and Propagation, EuCAP 2016
Y2 - 10 April 2016 through 15 April 2016
ER -