Abstract
A receive-diversity-aided power-fading compensation (RDA-PFC) scheme is proposed and demonstrated to eliminate the chromatic dispersion (CD)-induced power fading for C-band double-sideband (DSB) intensity modulation and direct detection (IM/DD) orthogonal frequency division multiplexing (OFDM) systems. By combining the responses before and after a dispersive element using a maximal-ratio combining (MRC) algorithm, the CD-induced power fading dips within the signal bandwidth of around 50 GHz can be effectively compensated for, which results in an up to 17.6-dB signal-to-noise ratio (SNR) improvement for the fading subcarriers after transmission over 10 km of standard single-mode fiber (SSMF). Using the 16 quadrature amplitude modulation (QAM) format, a diversity receiver with the proposed RDA-PFC scheme can support 170.6-Gbit/s OFDM signal transmission over a 10-km SSMF and reduces the bit error rate (BER) by more than an order of magnitude compared with a conventional receiver. Moreover, 208.1-Gbit/s adaptive bit and power loading OFDM signal transmission over a 10-km SSMF is realized by the proposed RDA-PFC scheme, which improves the capacity by 15.3% compared with the case without RDA-PFC at a BER of 3.8 × 10−3. The proposed RDA-PFC scheme shows great potential in CD-induced power-fading compensation for high-speed IM/DD OFDM systems.
Original language | English |
---|---|
Article number | 01469592 |
Pages (from-to) | 2237-2240 |
Number of pages | 4 |
Journal | Optics Letters |
Volume | 48 |
Issue number | 9 |
DOIs | |
Publication status | Published - 1 May 2023 |
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics