Realizing high-power and high-capacity zinc/sodium metal anodes through interfacial chemistry regulation

Zhen Hou, Yao Gao, Hong Tan, Biao Zhang

Research output: Journal article publicationJournal articleAcademic researchpeer-review

182 Citations (Scopus)

Abstract

Stable plating/stripping of metal electrodes under high power and high capacity remains a great challenge. Tailoring the deposition behavior on the substrate could partly resolve dendrites’ formation, but it usually works only under low current densities and limited capacities. Here we turn to regulate the separator’s interfacial chemistry through tin coating with decent conductivity and excellent zincophilicity. The former homogenizes the electric field distribution for smooth zinc metal on the substrate, while the latter enables the concurrent zinc deposition on the separator with a face-to-face growth. Consequently, dendrite-free zinc morphologies and superior cycling stability are achieved at simultaneous high current densities and large cycling capacities (1000 h at 5 mA/cm2 for 5 mAh/cm2 and 500 h at 10 mA/cm2 for 10 mAh/cm2). Furthermore, the concept could be readily extended to sodium metal anodes, demonstrating the interfacial chemistry regulation of separator is a promising route to circumvent the metal anode challenges.

Original languageEnglish
Article number3083
JournalNature Communications
Volume12
Issue number1
DOIs
Publication statusPublished - Dec 2021

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Realizing high-power and high-capacity zinc/sodium metal anodes through interfacial chemistry regulation'. Together they form a unique fingerprint.

Cite this