TY - JOUR
T1 - Real-world feasibility, accuracy and acceptability of automated retinal photography and AI-based cardiovascular disease risk assessment in Australian primary care settings: a pragmatic trial
AU - Hu, Wenyi
AU - Lin, Zhihong
AU - Clark, Malcolm
AU - Henwood, Jacqueline
AU - Shang, Xianwen
AU - Chen, Ruiye
AU - Kiburg, Katerina
AU - Zhang, Lei
AU - Ge, Zongyuan
AU - van Wijngaarden, Peter
AU - Zhu, Zhuoting
AU - He, Mingguang
N1 - Publisher Copyright:
© The Author(s) 2025.
PY - 2025/2/24
Y1 - 2025/2/24
N2 - We aim to assess the real-world accuracy (primary outcome), feasibility and acceptability (secondary outcomes) of an automated retinal photography and artificial intelligence (AI)-based cardiovascular disease (CVD) risk assessment system (rpCVD) in Australian primary care settings. Participants aged 45–70 years who had recently undergone all or part of a CVD risk assessment were recruited from two general practice clinics in Victoria, Australia. After consenting, participants underwent retinal imaging using an automated fundus camera, and an rpCVD risk score was generated by a deep learning algorithm. This score was compared against the World Health Organisation (WHO) CVD risk score, which incorporates age, sex, and other clinical risk factors. The predictive accuracy of the rpCVD and WHO CVD risk scores for 10-year incident CVD events was evaluated using data from the UK Biobank, with the accuracy of each system assessed through the area under the receiver operating characteristic curve (AUC). Participant satisfaction was assessed through a survey, and the imaging success rate was determined by the percentage of individuals with images of sufficient quality to produce an rpCVD risk score. Of the 361 participants, 339 received an rpCVD risk score, resulting in a 93.9% imaging success rate. The rpCVD risk scores showed a moderate correlation with the WHO CVD risk scores (Pearson correlation coefficient [PCC] = 0.526, 95% CI: 0.444–0.599). Despite this, the rpCVD system, which relies solely on retinal images, demonstrated a similar level of accuracy in predicting 10-year incident CVD (AUC = 0.672, 95% CI: 0.658-0.686) compared to the WHO CVD risk score (AUC = 0.693, 95% CI: 0.680-0.707). High satisfaction rates were reported, with 92.5% of participants and 87.5% of general practitioners (GPs) expressing satisfaction with the system. The automated rpCVD system, using only retinal photographs, demonstrated predictive accuracy comparable to the WHO CVD risk score, which incorporates multiple clinical factors including age, the most heavily weighted factor for CVD prediction. This underscores the potential of the rpCVD approach as a faster, easier, and non-invasive alternative for CVD risk assessment in primary care settings, avoiding the need for more complex clinical procedures.
AB - We aim to assess the real-world accuracy (primary outcome), feasibility and acceptability (secondary outcomes) of an automated retinal photography and artificial intelligence (AI)-based cardiovascular disease (CVD) risk assessment system (rpCVD) in Australian primary care settings. Participants aged 45–70 years who had recently undergone all or part of a CVD risk assessment were recruited from two general practice clinics in Victoria, Australia. After consenting, participants underwent retinal imaging using an automated fundus camera, and an rpCVD risk score was generated by a deep learning algorithm. This score was compared against the World Health Organisation (WHO) CVD risk score, which incorporates age, sex, and other clinical risk factors. The predictive accuracy of the rpCVD and WHO CVD risk scores for 10-year incident CVD events was evaluated using data from the UK Biobank, with the accuracy of each system assessed through the area under the receiver operating characteristic curve (AUC). Participant satisfaction was assessed through a survey, and the imaging success rate was determined by the percentage of individuals with images of sufficient quality to produce an rpCVD risk score. Of the 361 participants, 339 received an rpCVD risk score, resulting in a 93.9% imaging success rate. The rpCVD risk scores showed a moderate correlation with the WHO CVD risk scores (Pearson correlation coefficient [PCC] = 0.526, 95% CI: 0.444–0.599). Despite this, the rpCVD system, which relies solely on retinal images, demonstrated a similar level of accuracy in predicting 10-year incident CVD (AUC = 0.672, 95% CI: 0.658-0.686) compared to the WHO CVD risk score (AUC = 0.693, 95% CI: 0.680-0.707). High satisfaction rates were reported, with 92.5% of participants and 87.5% of general practitioners (GPs) expressing satisfaction with the system. The automated rpCVD system, using only retinal photographs, demonstrated predictive accuracy comparable to the WHO CVD risk score, which incorporates multiple clinical factors including age, the most heavily weighted factor for CVD prediction. This underscores the potential of the rpCVD approach as a faster, easier, and non-invasive alternative for CVD risk assessment in primary care settings, avoiding the need for more complex clinical procedures.
KW - Cardiovascular diseases
KW - Clinical trials
KW - Disease prevention
KW - Diseases
KW - Eye manifestations
KW - Medical imaging
KW - Predictive markers
UR - https://www.scopus.com/pages/publications/85218464615
U2 - 10.1038/s41746-025-01436-1
DO - 10.1038/s41746-025-01436-1
M3 - Journal article
AN - SCOPUS:85218464615
SN - 2398-6352
VL - 8
SP - 1
EP - 9
JO - npj Digital Medicine
JF - npj Digital Medicine
IS - 1
M1 - 122
ER -