Reactor design and modeling of the Fe(II)-catalyzed oxidation of trichlorophenol

Wei Chu, K. H. Chan

Research output: Journal article publicationJournal articleAcademic researchpeer-review

4 Citations (Scopus)

Abstract

Reactor design for the ferrous-catalyzed oxidation (FCO) of 2,4,6-trichlorophenol (TCP) was developed through an examination of the reaction kinetics under various conditions. The TCP decay kinetics was found to consist of reaction and stagnant stages, and two characteristic constants, the initial decay rate and the oxidative capacity of the FCO, were successfully derived and used to describe the respective stages. The proposed model and the method of solving the two characteristic constants is capable of describing the TCP degradation precisely in FCO at different Fe(II) concentrations and Fe(II)/H 2O 2 concentration ratios, where an Fe(II)/TCP concentration ratio of over 1 was found to be the critical point to achieve 100% removal of TCP by FCO. Equations for practical reactor sizing for predetermined performance were also developed on the basis of the two characteristic constants.
Original languageEnglish
Pages (from-to)6797-6802
Number of pages6
JournalIndustrial and Engineering Chemistry Research
Volume43
Issue number21
Publication statusPublished - 13 Oct 2004

ASJC Scopus subject areas

  • Polymers and Plastics
  • General Environmental Science
  • Chemical Engineering (miscellaneous)

Fingerprint

Dive into the research topics of 'Reactor design and modeling of the Fe(II)-catalyzed oxidation of trichlorophenol'. Together they form a unique fingerprint.

Cite this