Range Queries for Sensor-augmented RFID Systems

Xiulong Liu, Jiannong Cao, Keqiu Li, Jia Liu, Xin Xie

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

8 Citations (Scopus)


This paper takes the first step in studying the problem of range query for sensor-augmented RFID systems, which is to classify the target tags according to the range of tag information. The related schemes that seem to address this problem suffer from either low time-efficiency or the information corruption issue. To overcome their limitations, we first propose a basic classification protocol called Range Query (RQ), in which each tag pseudo-randomly chooses a slot from the time frame and uses the ON-OFF Keying modulation to reply its range identifier. Then, RQ employs a collaborative decoding method to extract the tag information range from even collision slots. The numerical results reveal that the number of queried ranges significantly affects the performance of RQ. To optimize the number of queried ranges, we further propose the PartitionMergence (PM) approach that consists of two steps, i.e., top-down partitioning and bottom-up merging. Sufficient theoretical analyses are proposed to optimize the involved parameters, thereby minimizing the time cost of RQ+PM. The prominent advantages of RQ+PM over previous schemes are two-fold: (i) it is able to make use of the collision slots, which are treated as useless in the previous schemes; (ii) it is immune to the interference from unexpected tags. We use the USRP and WISP tags to conduct a set of experiments, which demonstrate the feasibility of RQ+PM. Moreover, extensive simulation results reveal that RQ+PM can ensure 100% query accuracy, meanwhile reducing the time cost as much as 40% comparing with the existing schemes.

Original languageEnglish
Title of host publicationINFOCOM 2018 - IEEE Conference on Computer Communications
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages9
ISBN (Electronic)9781538641286
Publication statusPublished - 8 Oct 2018
Event2018 IEEE Conference on Computer Communications, INFOCOM 2018 - Honolulu, United States
Duration: 15 Apr 201819 Apr 2018

Publication series

NameProceedings - IEEE INFOCOM
ISSN (Print)0743-166X


Conference2018 IEEE Conference on Computer Communications, INFOCOM 2018
Country/TerritoryUnited States


  • Range Query
  • RFID
  • Sensor-augmented Tags

ASJC Scopus subject areas

  • Computer Science(all)
  • Electrical and Electronic Engineering


Dive into the research topics of 'Range Queries for Sensor-augmented RFID Systems'. Together they form a unique fingerprint.

Cite this