Range-based 3D Mapping Aided GNSS with NLOS correction based on skyplot with building boundaries

Hoi Fung Ng, Guohao Zhang, Li Ta Hsu

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

9 Citations (Scopus)

Abstract

The performance of conventional global navigation satellite system (GNSS) positioning in dense urban area is still a challenge due to the signal reflecting by building and result in multipath and non-light-of-sight (NLOS) receptions. These effects are much affecting the low-cost GNSS receiver (e.g. smartphone). A novel range-based 3D mapping aided (3DMA) GNSS with NLOS correction based on skyplot with building boundaries is proposed in this paper. Instead of using ray-tracing simulation, we propose to detect the reflection points from the skyplot with building boundaries. With the assumption that reflected signals follow the rule of reflection, the reflected points are only possible located at certain points on the skyplot. After the possible reflection being found, we can obtain the reflecting delay distance of NLOS reception for each candidate based on its distance between the reflecting point. Then, the pseudorange for each signal can be simulated based on the geodetic distance between candidate and other error term (e.g. satellite clock offset, ionosphere and tropospheric delays, etc.). Afterward, a set of simulated pseudorange will compare to the measurements and giving a score to the corresponding candidate. Finally, the user position is determined by averaging the position of candidates with score weighting, indicates the position with a simulated pseudorange most matching to the measurements. The proposed algorithm is verified through real experiments in the dense urban areas in Hong Kong. A commercial grade GNSS receiver is employed to collect the raw data. The performance of the proposed algorithm is compared with the conventional weighted least square (WLS) and the ray-tracing based 3MDA GNSS. According to the results, the proposed algorithm is able to correctly simulate the pseudorange error with lower computation load and further achieves positioning accuracy with less than 10 meters error.

Original languageEnglish
Title of host publicationION 2019 Pacific PNT Meeting Proceedings
PublisherThe Institute of Navigation
Pages737-751
Number of pages15
ISBN (Electronic)0936406224, 9780936406220
DOIs
Publication statusPublished - Apr 2019
EventInstitute of Navigation 2019 Pacific Positioning, Navigation and Timing Meeting, PACIFIC PNT 2019 - Honolulu, United States
Duration: 8 Apr 201911 Apr 2019

Publication series

NameProceedings of the Institute of Navigation Pacific Positioning, Navigation and Timing Meeting, Pacific PNT
Volume2019-April
ISSN (Print)2331-6284

Conference

ConferenceInstitute of Navigation 2019 Pacific Positioning, Navigation and Timing Meeting, PACIFIC PNT 2019
Country/TerritoryUnited States
CityHonolulu
Period8/04/1911/04/19

ASJC Scopus subject areas

  • Transportation
  • Ocean Engineering
  • Aerospace Engineering
  • Electrical and Electronic Engineering
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Range-based 3D Mapping Aided GNSS with NLOS correction based on skyplot with building boundaries'. Together they form a unique fingerprint.

Cite this