Abstract
Rail health conditions are among the top concerns in the area of train safety. In this study, a fiber optic monitoring system is developed to achieve ultrasonic guided wave based rail crack detection. Although fiber Bragg grating (FBG) sensor is a wellknown suitable candidate for long-distance monitoring of rail, the sampling speed of commercially available optic spectrum analyzers limits their application to ultrasonic wave detection. A high-speed FBG interferometric interrogation module is developed, which constitutes the rail monitoring system in conjunction with an active wave generation module and a sensing network. To find appropriate excitation frequency and FBG dimension for ultrasonic guided wave generation and reception, dispersion analysis of rail, a waveguide with complex cross-section, is conducted to guide subsequent design of damage detection experiment. The system and the crack detection technique are then implemented on a long full-scale rail segment, by deploying PZT (lead zirconate titanate) actuator and FBG sensor in pitch-catch and pulse-echo configurations. Artificial cracks in different lengths are introduced to the rail. Frequency-domain analysis of the rail responses is used to identify the damageinduced discrimination after direct observation of time-domain signals. Power spectral density analysis of the purified signals, assisted by discrete wavelet filtering, leads to the graphic presentation of rail integrity.
Original language | English |
---|---|
Title of host publication | Structural Health Monitoring 2017 |
Subtitle of host publication | Real-Time Material State Awareness and Data-Driven Safety Assurance - Proceedings of the 11th International Workshop on Structural Health Monitoring, IWSHM 2017 |
Publisher | DEStech Publications |
Pages | 1763-1770 |
Number of pages | 8 |
Volume | 1 |
ISBN (Electronic) | 9781605953304 |
Publication status | Published - 1 Jan 2017 |
Event | 11th International Workshop on Structural Health Monitoring 2017: Real-Time Material State Awareness and Data-Driven Safety Assurance, IWSHM 2017 - Stanford University, Stanford, United States Duration: 12 Sept 2017 → 14 Sept 2017 |
Conference
Conference | 11th International Workshop on Structural Health Monitoring 2017: Real-Time Material State Awareness and Data-Driven Safety Assurance, IWSHM 2017 |
---|---|
Country/Territory | United States |
City | Stanford |
Period | 12/09/17 → 14/09/17 |
ASJC Scopus subject areas
- Health Information Management
- Computer Science Applications