Radio map based path planning for cellular-connected UAV

Shuowen Zhang, Rui Zhang

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

24 Citations (Scopus)


In this paper, we study the path planning for a cellular-connected unmanned aerial vehicle (UAV) to minimize its flying distance from given initial to final locations, while ensuring a target link quality in terms of the large-scale channel gain with each of its associated ground base stations (GBSs) during the flight. To this end, we propose the use of radio map that provides the information on the large-scale channel gains between each GBS and uniformly sampled locations on a three- dimensional (3D) grid over the region of interest, which are assumed to be time-invariant due to the generally static and large-size obstacles therein (e.g., buildings). Based on the given radio maps of the GBSs, we first obtain the optimal UAV path by solving an equivalent shortest path problem (SPP) in graph theory. To reduce the computation complexity of the optimal solution, we further propose a grid quantization method whereby the grid points in each GBS's radio map are more coarsely sampled by exploiting the spatial channel correlation over neighboring grids. Then, we solve the approximate SPP over the reduced-size radio map (graph) more efficiently. Numerical results show that the proposed solutions can effectively minimize the flying distance of the UAV subject to its communication quality constraint. Moreover, a flexible trade-off between performance and complexity can be achieved by adjusting the quantization ratio for the radio map.

Original languageEnglish
Title of host publication2019 IEEE Global Communications Conference, GLOBECOM 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728109626
Publication statusPublished - Dec 2019
Externally publishedYes
Event2019 IEEE Global Communications Conference, GLOBECOM 2019 - Waikoloa, United States
Duration: 9 Dec 201913 Dec 2019

Publication series

Name2019 IEEE Global Communications Conference, GLOBECOM 2019 - Proceedings


Conference2019 IEEE Global Communications Conference, GLOBECOM 2019
Country/TerritoryUnited States

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Hardware and Architecture
  • Information Systems
  • Signal Processing
  • Information Systems and Management
  • Safety, Risk, Reliability and Quality
  • Media Technology
  • Health Informatics


Dive into the research topics of 'Radio map based path planning for cellular-connected UAV'. Together they form a unique fingerprint.

Cite this