Radiation Enhancement by Graphene Oxide on Microelectromechanical System Emitters for Highly Selective Gas Sensing

Nanxi Li, Hongye Yuan, Linfang Xu, Jifang Tao, Doris Keh Ting Ng, Lennon Yao Ting Lee, Daw Don Cheam, Yongquan Zeng, Bo Qiang, Qijie Wang, Hong Cai, Navab Singh, Dan Zhao

Research output: Journal article publicationJournal articleAcademic researchpeer-review

31 Citations (Scopus)

Abstract

Infrared gas sensors have been proven promising for broad applications in Internet of Things and Industrial Internet of Things. However, the lack of miniaturized light sources with good compatibility and tunable spectral features hinders their widespread utilization. Herein, a strategy is proposed to increase the radiated power from microelectromechanical-based thermal emitters by coating with graphene oxide (GO). The radiation can be substantially enhanced, which partially stems from the high emissivity of GO coating demonstrated by spectroscopic methods. Moreover, the sp2 structure within GO may induce plasmons and thus couple with photons to produce blackbody radiation and/or new thermal emission sources. As a proof-of-concept demonstration, the GO-coated emitter is integrated into a multifunctional monitoring platform and evaluated for gas detection. The platform exhibits sensitive and highly selective detection toward CO2 at room temperature with a detection limit of 50 ppm and short response/recovery time, outperforming the state-of-the-art gas sensors. This study demonstrates the emission tailorability of thermal emitters and the feasibility of improving the associated gas sensing property, offering perspectives for designing and fabricating high-end optical sensors with cost-effectiveness and superior performance.

Original languageEnglish
Pages (from-to)2746-2753
Number of pages8
JournalACS Sensors
Volume4
Issue number10
DOIs
Publication statusPublished - 25 Oct 2019
Externally publishedYes

Keywords

  • graphene oxide
  • infrared gas sensing
  • MEMS emitters
  • radiation enhancement
  • thermal emission

ASJC Scopus subject areas

  • Bioengineering
  • Instrumentation
  • Process Chemistry and Technology
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Radiation Enhancement by Graphene Oxide on Microelectromechanical System Emitters for Highly Selective Gas Sensing'. Together they form a unique fingerprint.

Cite this