Quantification of the Impact of Fine Particulate Matter on Solar Energy Resources and Energy Performance of Different Photovoltaic Technologies

Zhe Song, Meng Wang, Hongxing Yang

Research output: Journal article publicationJournal articleAcademic researchpeer-review

12 Citations (Scopus)

Abstract

Ambient fine particulate matter (PM2.5) could be a potential environmental risk for decreasing the available solar energy resources and solar photovoltaic (PV) power generation. This study quantifies the attenuation effects of PM2.5 on surface solar irradiance and system performance of different solar PV technologies in Hong Kong. The analysis based on observational irradiation data shows that the global horizontal irradiance decreased by more than 5% in most months under the conditions of PM2.5 concentration exceeding 33.5 μg/m3. During the experiment, the average PM2.5-related losses in the energy output of crystalline silicon and thin-film PV systems could be up to 7.00 and 9.73%, respectively. The measured energy outputs of the experimental PV modules suggest that PM2.5 affects the energy performance of thin-film solar cells with a larger band gap more significantly than that of crystalline silicon PV modules. Moreover, an increasing trend in the performance ratio of monocrystalline silicon, polycrystalline silicon, and copper indium gallium selenide PV systems with the increase of PM2.5 concentration is observed. In contrast, the amorphous silicon and cadmium telluride PV systems with a narrower spectral response range show a decreasing trend in the performance ratio over the experiment. Results indicate that the losses in the available solar energy resources and PV energy potential are expected to increase in areas where heavier PM2.5 pollution exists.

Original languageEnglish
Pages (from-to)275
Number of pages286
JournalACS Environmental Au
DOIs
Publication statusPublished - 21 Feb 2022

Keywords

  • air pollution
  • fine particulate matter
  • photovoltaic
  • solar irradiation
  • solar photovoltaic power generation

ASJC Scopus subject areas

  • Environmental Science (miscellaneous)
  • Environmental Engineering
  • Water Science and Technology

Fingerprint

Dive into the research topics of 'Quantification of the Impact of Fine Particulate Matter on Solar Energy Resources and Energy Performance of Different Photovoltaic Technologies'. Together they form a unique fingerprint.

Cite this