TY - JOUR
T1 - Quantification of indoor VOCs in twenty mechanically ventilated buildings in Hong Kong
AU - Chao, Christopher Y.
AU - Chan, George Y.
N1 - Funding Information:
The authors would like to thank the Hong Kong University of Science and Technology in supporting this research through a Graduate Student/Studentship Programme.
PY - 2001
Y1 - 2001
N2 - Information of volatile organic compounds (VOCs) in buildings in Hong Kong is relatively scared compared to other countries. Information of how much VOC accumulation comes from occupants themselves, from building materials and other outdoor sources are scarce even on a global basis. This study aimed at collecting information of the levels of individual VOCs using US-EPA Method TO-14. Twenty building premises including offices and public places such as customer service centers, shopping centers, etc. were studied. Samples were taken during the time slots when the mechanical ventilation system was operating. The 43 VOCs were grouped into three categories, i.e. aromatic hydrocarbons, chlorinated hydrocarbons and organohalogen. The most dominant VOCs found in the indoor samples were benzene, toluene, ethylbenzene, xylenes (BETX), chloroform and trichloroethylene as 100% of the samples were found to contain these VOCs. Besides, more than 75% of the samples were found to contain 1,3,5-trimethylbenzene, methylchloride and dichloromethane. The wt% of chlorinated hydrocarbons (48%) and the wt% of aromatic hydrocarbons (38%) only differed by about 10% in the office sector. Organohalogen (14%) contributed to the smallest fraction of the total on all the premises in the office sector on weight basis. A completely different distribution pattern was found in the non-office sector. The most abundant class of VOCs in terms of weight was aromatic hydrocarbons (80%). The second abundant class of VOCs was chlorinated hydrocarbons (14%) and was much less than the level of aromatic hydrocarbons in terms of weight. Organohalogen (6%) contributed to the smallest fraction of the total on all the premises in the non-office sector on weight basis.
AB - Information of volatile organic compounds (VOCs) in buildings in Hong Kong is relatively scared compared to other countries. Information of how much VOC accumulation comes from occupants themselves, from building materials and other outdoor sources are scarce even on a global basis. This study aimed at collecting information of the levels of individual VOCs using US-EPA Method TO-14. Twenty building premises including offices and public places such as customer service centers, shopping centers, etc. were studied. Samples were taken during the time slots when the mechanical ventilation system was operating. The 43 VOCs were grouped into three categories, i.e. aromatic hydrocarbons, chlorinated hydrocarbons and organohalogen. The most dominant VOCs found in the indoor samples were benzene, toluene, ethylbenzene, xylenes (BETX), chloroform and trichloroethylene as 100% of the samples were found to contain these VOCs. Besides, more than 75% of the samples were found to contain 1,3,5-trimethylbenzene, methylchloride and dichloromethane. The wt% of chlorinated hydrocarbons (48%) and the wt% of aromatic hydrocarbons (38%) only differed by about 10% in the office sector. Organohalogen (14%) contributed to the smallest fraction of the total on all the premises in the office sector on weight basis. A completely different distribution pattern was found in the non-office sector. The most abundant class of VOCs in terms of weight was aromatic hydrocarbons (80%). The second abundant class of VOCs was chlorinated hydrocarbons (14%) and was much less than the level of aromatic hydrocarbons in terms of weight. Organohalogen (6%) contributed to the smallest fraction of the total on all the premises in the non-office sector on weight basis.
KW - Hong Kong
KW - Non-office sector
KW - Office sector
KW - Ventilation
KW - Volatile organic compounds
UR - http://www.scopus.com/inward/record.url?scp=0035168859&partnerID=8YFLogxK
U2 - 10.1016/S1352-2310(01)00410-1
DO - 10.1016/S1352-2310(01)00410-1
M3 - Journal article
AN - SCOPUS:0035168859
SN - 1352-2310
VL - 35
SP - 5895
EP - 5913
JO - Atmospheric Environment
JF - Atmospheric Environment
IS - 34
ER -