ProCC: Progressive Cross-Primitive Compatibility for Open-World Compositional Zero-Shot Learning

Fushuo Huo, Wenchao Xu, Song Guo, Jingcai Guo, Haozhao Wang, Ziming Liu, Xiaocheng Lu

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

2 Citations (Scopus)

Abstract

Open-World Compositional Zero-shot Learning (OW-CZSL) aims to recognize novel compositions of state and object primitives in images with no priors on the compositional space, which induces a tremendously large output space containing all possible state-object compositions. Existing works either learn the joint compositional state-object embedding or predict simple primitives with separate classifiers. However, the former method heavily relies on external word embedding methods, and the latter ignores the interactions of interdependent primitives, respectively. In this paper, we revisit the primitive prediction approach and propose a novel method, termed Progressive Cross-primitive Compatibility (ProCC), to mimic the human learning process for OW-CZSL tasks. Specifically, the cross-primitive compatibility module explicitly learns to model the interactions of state and object features with the trainable memory units, which efficiently acquires cross-primitive visual attention to reason high-feasibility compositions, without the aid of external knowledge. Moreover, to alleviate the invalid cross-primitive interactions, especially for partial-supervision conditions (pCZSL), we design a progressive training paradigm to optimize the primitive classifiers conditioned on pre-trained features in an easy-to-hard manner. Extensive experiments on three widely used benchmark datasets demonstrate that our method outperforms other representative methods on both OW-CZSL and pCZSL settings by large margins.

Original languageEnglish
Title of host publicationThirty-Eighth AAAI Conference on Artificial Intelligence (AAAI2024)
EditorsMichael Wooldridge, Jennifer Dy, Sriraam Natarajan
PublisherAssociation for the Advancement of Artificial Intelligence
Pages12689-12697
Number of pages9
Edition11
ISBN (Electronic)1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879
DOIs
Publication statusPublished - 25 Mar 2024
Event38th AAAI Conference on Artificial Intelligence, AAAI 2024 - Vancouver, Canada
Duration: 20 Feb 202427 Feb 2024

Publication series

NameProceedings of the AAAI Conference on Artificial Intelligence
Number11
Volume38
ISSN (Print)2159-5399
ISSN (Electronic)2374-3468

Conference

Conference38th AAAI Conference on Artificial Intelligence, AAAI 2024
Country/TerritoryCanada
CityVancouver
Period20/02/2427/02/24

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'ProCC: Progressive Cross-Primitive Compatibility for Open-World Compositional Zero-Shot Learning'. Together they form a unique fingerprint.

Cite this