Probing oxide-ion conduction in low-temperature SOFCs

Mingzi Sun, Qian He, Xiaojun Kuang, Qinyuan Zhang, Shi Ye, Bolong Huang

Research output: Journal article publicationJournal articleAcademic researchpeer-review

28 Citations (Scopus)

Abstract

Nowadays, by no means fortuitous, pollution-free and bio-regenerative solid oxide fuel cells (SOFCs) have arisen to be a competitive candidate as next generation renewable energy, which exhibiting high energy efficiency and flexible fuel choices. However, fast oxide-ion transportation of electrolyte could only be ensured in high working temperature by conventional views, which can decrease the voltage loss and further determine the electrical performance of SOFCs. Herein we report an in-situ and non-contact method to monitor the working condition of SOFCs and it is potential to become a promising optical temperature sensor to detect the working temperature of electrolyte materials. With the combinative protocol between density functional theory calculation and upconversion (UC) luminescence, the entanglement between thermal-driven formed O-ion Frenkel pair (native solubilizer) and Bi 3+ dopant (competitive inhibitor) in La 2Mo 2O 9 derivatives has been unraveled, especially at a lower temperature required by a future SOFCs device. It is a potential route for screening and characterizing the candidate electrolyte onsets in lower temperature without sacrificing electrical performance.

Original languageEnglish
Pages (from-to)88-96
Number of pages9
JournalNano Energy
Volume50
DOIs
Publication statusPublished - 1 Aug 2018

Keywords

  • Anion-Frenkel pair
  • DFT
  • Dopant
  • La Mo O
  • SOFCs
  • UC luminescence

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • General Materials Science
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Probing oxide-ion conduction in low-temperature SOFCs'. Together they form a unique fingerprint.

Cite this