PrivKVM*: Revisiting Key-Value Statistics Estimation with Local Differential Privacy

Qingqing Ye, Haibo Hu, Xiaofeng Meng, Huadi Zheng, Kai Huang, Chengfang Fang, Jie Shi

    Research output: Journal article publicationJournal articleAcademic researchpeer-review

    27 Citations (Scopus)

    Abstract

    A key factor in big data analytics and artificial intelligence is the collection of user data from a large population. However, the collection of user data comes at the price of privacy risks, not only for users but also for businesses who are vulnerable to internal and external data breaches. To address privacy issues, local differential privacy (LDP) has been proposed to enable an untrusted collector to obtain accurate statistical estimation on sensitive user data (e.g., location, health, and financial data) without actually accessing the true records. As key-value data is an extremely popular NoSQL data model, there are a few works in the literature that study LDP-based statistical estimation on key-value data. However, these works have some major limitations, including supporting small key space only, fixed key collection range, difficulty in choosing an appropriate padding length, and high communication cost. In this paper, we propose a two-phase mechanism PrivKVM* as an optimized and highly-complete solution to LDP-based key-value data collection and statistics estimation. We verify its correctness and effectiveness through rigorous theoretical analysis and extensive experimental results.
    Original languageEnglish
    Article number9524509
    JournalIEEE Transactions on Dependable and Secure Computing
    DOIs
    Publication statusAccepted/In press - Aug 2021

    Keywords

    • Data collection
    • Differential privacy
    • Estimation
    • Frequency estimation
    • Histograms
    • Key-value data
    • Perturbation methods
    • Privacy
    • histogram
    • local differential privacy
    • privacy-preserving data collection
    • statistics estimation

    ASJC Scopus subject areas

    • General Computer Science
    • Electrical and Electronic Engineering

    Fingerprint

    Dive into the research topics of 'PrivKVM*: Revisiting Key-Value Statistics Estimation with Local Differential Privacy'. Together they form a unique fingerprint.

    Cite this