Prestressed unbonded reinforcement system with multiple CFRP plates for fatigue strengthening of steel members

Ardalan Hosseini, Elyas Ghafoori, Masoud Motavalli, Alain Nussbaumer, Xiao Ling Zhao, Roland Koller

Research output: Journal article publicationJournal articleAcademic researchpeer-review

28 Citations (Scopus)


Carbon fiber reinforced polymer (CFRP) composites have exhibited a great potential for strengthening of steel structures. In the current study, an innovative prestressed unbonded reinforcement (PUR) system is introduced for fatigue strengthening of existing steel members. The system relies on a pair of mechanical clamps; each holds multiple CFRP plates and anchors their prestressing forces to the steel substrate via friction. A finite element model was established to optimize the design of the required mechanical components of the system. A set of static and fatigue tests was conducted on the developed mechanical clamps as the key elements of the proposed PUR system. The performance of the PUR system was then evaluated using a set of fatigue tests on two precracked steel plate specimens, one without any strengthening system and the other one strengthened with the proposed PUR system. In the latter specimen, the CFRP plates were prestressed up to about 800 MPa (approximately 30% of the CFRP tensile strength), which resulted in a complete fatigue crack arrest in the precracked steel plate. Furthermore, neither slippage of the mechanical clamps nor any prestress loss in the CFRP plates was observed after 7.5 million fatigue cycles. Based on the promising experimental results, obtained from the sets of fatigue tests performed in the current study, it can be concluded that the proposed PUR system can be considered as an efficient alternative to the conventional bonded reinforcement solutions for fatigue strengthening of damaged steel members.

Original languageEnglish
Article number264
Issue number3
Publication statusPublished - 4 Mar 2018
Externally publishedYes


  • Carbon fiber reinforced polymer
  • Fatigue crack
  • Fatigue strengthening
  • Finite element simulation
  • Mechanical clamp
  • Prestressed unbonded reinforcement
  • Steel structures

ASJC Scopus subject areas

  • Chemistry(all)
  • Polymers and Plastics


Dive into the research topics of 'Prestressed unbonded reinforcement system with multiple CFRP plates for fatigue strengthening of steel members'. Together they form a unique fingerprint.

Cite this