Preserve Context Information for Extract-Generate Long-Input Summarization Framework

Ruifeng Yuan, Zili Wang, Ziqiang Cao, Wenjie Li

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review


The Extract-generate framework has been a classic approach for text summarization. As pretrained language models struggling with long-input summarization for their high memory cost, extract-generate framework regains researchers' interests. However, the cost of its effectiveness in dealing with long-input summarization is the loss of context information. In this paper, we present a context-aware extract-generate framework (CAEG) for long-input text summarization. It focuses on preserving both local and global context information in an extract-generate framework with little cost, and can be applied to most of existing extract-generate summarization models. CAEG generates a set of context-related text spans called context prompts for each text snippet and use them to transfer the context information from the extractor and generator. To find such context prompts, we propose to capture the context information based on the interpretation of the extractor, where the text spans having the highest contribution to the extraction decision are considered as containing the richest context information. We evaluate our approach on both long-document and long-dialogue summarization datasets: arXiv and QMSum. The experiment results show that CAEG achieves the-state-of-art result on QMSum and outperforms other extract-generate based models in arXiv.

Original languageEnglish
Title of host publicationAAAI-23 Technical Tracks 11
EditorsBrian Williams, Yiling Chen, Jennifer Neville
PublisherAAAI press
Number of pages8
ISBN (Electronic)9781577358800
Publication statusPublished - 27 Jun 2023
Event37th AAAI Conference on Artificial Intelligence, AAAI 2023 - Washington, United States
Duration: 7 Feb 202314 Feb 2023

Publication series

NameProceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023


Conference37th AAAI Conference on Artificial Intelligence, AAAI 2023
Country/TerritoryUnited States

ASJC Scopus subject areas

  • Artificial Intelligence


Dive into the research topics of 'Preserve Context Information for Extract-Generate Long-Input Summarization Framework'. Together they form a unique fingerprint.

Cite this