TY - JOUR
T1 - Prediction of evaporation in arid and semi-arid regions
T2 - a comparative study using different machine learning models
AU - Yaseen, Zaher Mundher
AU - Al-Juboori, Anas Mahmood
AU - Beyaztas, Ufuk
AU - Al-Ansari, Nadhir
AU - Chau, Kwok Wing
AU - Qi, Chongchong
AU - Ali, Mumtaz
AU - Salih, Sinan Q.
AU - Shahid, Shamsuddin
PY - 2020/1/1
Y1 - 2020/1/1
N2 - Evaporation, one of the fundamental components of the hydrology cycle, is differently influenced by various meteorological variables in different climatic regions. The accurate prediction of evaporation is essential for multiple water resources engineering applications, particularly in developing countries like Iraq where the meteorological stations are not sustained and operated appropriately for in situ estimations. This is where advanced methodologies such as machine learning (ML) models can make valuable contributions. In this research, evaporation is predicted at two different meteorological stations located in arid and semi-arid regions of Iraq. Four different ML models for the prediction of evaporation–the classification and regression tree (CART), the cascade correlation neural network (CCNNs), gene expression programming (GEP), and the support vector machine (SVM)–were developed and constructed using various input combinations of meteorological variables. The results reveal that the best predictions are achieved by incorporating sunshine hours, wind speed, relative humidity, rainfall, and the minimum, mean, and maximum temperatures. The SVM was found to show the best performance with wind speed, rainfall, and relative humidity as inputs at Station I (R2=.92), and with all variables as inputs at Station II (R2=.97). All the ML models performed well in predicting evaporation at the investigated locations.
AB - Evaporation, one of the fundamental components of the hydrology cycle, is differently influenced by various meteorological variables in different climatic regions. The accurate prediction of evaporation is essential for multiple water resources engineering applications, particularly in developing countries like Iraq where the meteorological stations are not sustained and operated appropriately for in situ estimations. This is where advanced methodologies such as machine learning (ML) models can make valuable contributions. In this research, evaporation is predicted at two different meteorological stations located in arid and semi-arid regions of Iraq. Four different ML models for the prediction of evaporation–the classification and regression tree (CART), the cascade correlation neural network (CCNNs), gene expression programming (GEP), and the support vector machine (SVM)–were developed and constructed using various input combinations of meteorological variables. The results reveal that the best predictions are achieved by incorporating sunshine hours, wind speed, relative humidity, rainfall, and the minimum, mean, and maximum temperatures. The SVM was found to show the best performance with wind speed, rainfall, and relative humidity as inputs at Station I (R2=.92), and with all variables as inputs at Station II (R2=.97). All the ML models performed well in predicting evaporation at the investigated locations.
KW - arid and semi-arid regions
KW - best input combination
KW - evaporation
KW - machine learning
KW - predictive model
UR - http://www.scopus.com/inward/record.url?scp=85075131156&partnerID=8YFLogxK
U2 - 10.1080/19942060.2019.1680576
DO - 10.1080/19942060.2019.1680576
M3 - Journal article
AN - SCOPUS:85075131156
SN - 1994-2060
VL - 14
SP - 70
EP - 89
JO - Engineering Applications of Computational Fluid Mechanics
JF - Engineering Applications of Computational Fluid Mechanics
IS - 1
ER -