Predicting transient particle transport in enclosed environments with the combined computational fluid dynamics and Markov chain method

C. Chen, C. H. Lin, Z. Long, Q. Chen

Research output: Journal article publicationJournal articleAcademic researchpeer-review

65 Citations (Scopus)

Abstract

To quickly obtain information about airborne infectious disease transmission in enclosed environments is critical in reducing the infection risk to the occupants. This study developed a combined computational fluid dynamics (CFD) and Markov chain method for quickly predicting transient particle transport in enclosed environments. The method first calculated a transition probability matrix using CFD simulations. Next, the Markov chain technique was applied to calculate the transient particle concentration distributions. This investigation used three cases, particle transport in an isothermal clean room, an office with an underfloor air distribution system, and the first-class cabin of an MD-82 airliner, to validate the combined CFD and Markov chain method. The general trends of the particle concentrations vs. time predicted by the Markov chain method agreed with the CFD simulations for these cases. The proposed Markov chain method can provide faster-than-real-time information about particle transport in enclosed environments. Furthermore, for a fixed airflow field, when the source location is changed, the Markov chain method can be used to avoid recalculation of the particle transport equation and thus reduce computing costs.

Original languageEnglish
Pages (from-to)81-92
Number of pages12
JournalIndoor Air
Volume24
Issue number1
DOIs
Publication statusPublished - Feb 2014

Keywords

  • Aircraft cabin
  • Clean room
  • Computational fluid dynamics
  • Infectious diseases transmission
  • Lagrangian model
  • Office
  • Transition probability matrix

ASJC Scopus subject areas

  • Environmental Engineering
  • Building and Construction
  • Public Health, Environmental and Occupational Health

Fingerprint

Dive into the research topics of 'Predicting transient particle transport in enclosed environments with the combined computational fluid dynamics and Markov chain method'. Together they form a unique fingerprint.

Cite this