Plant phenology and global climate change: Current progresses and challenges

Shilong Piao, Qiang Liu, Anping Chen, Ivan A. Janssens, Yongshuo Fu, Junhu Dai, Lingli Liu, Xu Lian, Miaogen Shen, Xiaolin Zhu

Research output: Journal article publicationReview articleAcademic researchpeer-review

122 Citations (Scopus)

Abstract

Plant phenology, the annually recurring sequence of plant developmental stages, is important for plant functioning and ecosystem services and their biophysical and biogeochemical feedbacks to the climate system. Plant phenology depends on temperature, and the current rapid climate change has revived interest in understanding and modeling the responses of plant phenology to the warming trend and the consequences thereof for ecosystems. Here, we review recent progresses in plant phenology and its interactions with climate change. Focusing on the start (leaf unfolding) and end (leaf coloring) of plant growing seasons, we show that the recent rapid expansion in ground- and remote sensing- based phenology data acquisition has been highly beneficial and has supported major advances in plant phenology research. Studies using multiple data sources and methods generally agree on the trends of advanced leaf unfolding and delayed leaf coloring due to climate change, yet these trends appear to have decelerated or even reversed in recent years. Our understanding of the mechanisms underlying the plant phenology responses to climate warming is still limited. The interactions between multiple drivers complicate the modeling and prediction of plant phenology changes. Furthermore, changes in plant phenology have important implications for ecosystem carbon cycles and ecosystem feedbacks to climate, yet the quantification of such impacts remains challenging. We suggest that future studies should primarily focus on using new observation tools to improve the understanding of tropical plant phenology, on improving process-based phenology modeling, and on the scaling of phenology from species to landscape-level.

Original languageEnglish
Pages (from-to)1922-1940
Number of pages19
JournalGlobal Change Biology
Volume25
Issue number6
DOIs
Publication statusPublished - Jun 2019

Keywords

  • climate change
  • climatic feedback
  • ecological implications
  • leaf coloring
  • leaf unfolding
  • mechanisms and drivers
  • phenological modeling
  • plant phenology
  • satellite-derived phenology

ASJC Scopus subject areas

  • Global and Planetary Change
  • Environmental Chemistry
  • Ecology
  • Environmental Science(all)

Cite this