Photopolymerizable and Antibacterial Hydrogels Loaded with Metabolites from Lacticaseibacillus rhamnosus GG for Infected Wound Healing

Yanting Han, Zhe Yin, Yilin Wang, Yuanzhang Jiang, Jianming Chen, Zhonghua Miao, Fang He, Ruyue Cheng, Lin Tan, Ka Li

Research output: Journal article publicationJournal articleAcademic researchpeer-review

Abstract

In response to increasing antibiotic resistance and the pressing demand for safer infected wound care, probiotics have emerged as promising bioactive agents. To address the challenges associated with the safe and efficient application of probiotics, this study successfully loaded metabolites from Lacticaseibacillus rhamnosus GG (LGG) into a gelatin cross-linked macromolecular network by an in situ blending and photopolymerization method. The obtained LM-GelMA possesses injectability and autonomous healing capabilities. Importantly, the incorporation of LGG metabolites endows LM-GelMA with excellent antibacterial properties against Staphylococcus aureus and Escherichia coli, while maintaining good biocompatibility. In vivo assessments revealed that LM-GelMA can accelerate wound healing by mitigating infections induced by pathogenic bacteria. This is accompanied by a reduction in the expression of key proinflammatory cytokines such as TNF-α, IL-6, VEGFR2, and TGF-β, leading to increased re-epithelialization and collagen formation. Moreover, microbiological analysis confirmed that LM-GelMA can modulate the abundance of beneficial wound microbiota at family and genus levels. This study provides a facile strategy and insights into the functional design of hydrogels from the perspective of wound microenvironment regulation.

Original languageEnglish
Pages (from-to)2587-2596
Number of pages10
JournalBiomacromolecules
Volume25
Issue number4
DOIs
Publication statusPublished - 8 Apr 2024

ASJC Scopus subject areas

  • Bioengineering
  • Biomaterials
  • Polymers and Plastics
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Photopolymerizable and Antibacterial Hydrogels Loaded with Metabolites from Lacticaseibacillus rhamnosus GG for Infected Wound Healing'. Together they form a unique fingerprint.

Cite this