TY - JOUR
T1 - Photocatalytic water splitting by N-TiO2 on MgO (111) with exceptional quantum efficiencies at elevated temperatures
AU - Li, Yiyang
AU - Peng, Yung Kang
AU - Hu, Liangsheng
AU - Zheng, Jianwei
AU - Prabhakaran, Dharmalingam
AU - Wu, Simson
AU - Puchtler, Timothy J.
AU - Li, Mo
AU - Wong, Kwok Yin
AU - Taylor, Robert A.
AU - Tsang, Shik Chi Edman
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Photocatalytic water splitting is attracting enormous interest for the storage of solar energy but no practical method has yet been identified. In the past decades, various systems have been developed but most of them suffer from low activities, a narrow range of absorption and poor quantum efficiencies (Q.E.) due to fast recombination of charge carriers. Here we report a dramatic suppression of electron-hole pair recombination on the surface of N-doped TiO2 based nanocatalysts under enhanced concentrations of H+ and OH−, and local electric field polarization of a MgO (111) support during photolysis of water at elevated temperatures. Thus, a broad optical absorption is seen, producing O2 and H2 in a 1:2 molar ratio with a H2 evolution rate of over 11,000 μmol g−1 h−1 without any sacrificial reagents at 270 °C. An exceptional range of Q.E. from 81.8% at 437 nm to 3.2% at 1000 nm is also reported.
AB - Photocatalytic water splitting is attracting enormous interest for the storage of solar energy but no practical method has yet been identified. In the past decades, various systems have been developed but most of them suffer from low activities, a narrow range of absorption and poor quantum efficiencies (Q.E.) due to fast recombination of charge carriers. Here we report a dramatic suppression of electron-hole pair recombination on the surface of N-doped TiO2 based nanocatalysts under enhanced concentrations of H+ and OH−, and local electric field polarization of a MgO (111) support during photolysis of water at elevated temperatures. Thus, a broad optical absorption is seen, producing O2 and H2 in a 1:2 molar ratio with a H2 evolution rate of over 11,000 μmol g−1 h−1 without any sacrificial reagents at 270 °C. An exceptional range of Q.E. from 81.8% at 437 nm to 3.2% at 1000 nm is also reported.
UR - http://www.scopus.com/inward/record.url?scp=85072713245&partnerID=8YFLogxK
U2 - 10.1038/s41467-019-12385-1
DO - 10.1038/s41467-019-12385-1
M3 - Journal article
C2 - 31562317
AN - SCOPUS:85072713245
SN - 2041-1723
VL - 10
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 4421
ER -