TY - JOUR
T1 - Phosphorus Removal and Recovery from Wastewater using Fe-Dosing Bioreactor and Cofermentation
T2 - Investigation by X-ray Absorption Near-Edge Structure Spectroscopy
AU - Li, Ruo Hong
AU - Cui, Jin Li
AU - Li, Xiang Dong
AU - Li, Xiao Yan
PY - 2018/12/18
Y1 - 2018/12/18
N2 - A new phosphorus (P) removal and recovery process that integrates an FeCl 3 -dosing, membrane bioreactor (MBR), and side-stream cofermentation was developed for wastewater treatment. The Fe and P species and their transformation mechanisms via aerobic and anaerobic conditions were investigated with X-ray absorption near edge structure (XANES) spectroscopy. In the new treatment system, 98.4% of the total P in domestic wastewater was removed and retained in activated sludge in the MBR. During the subsequent acidogenic cofermentation with food waste, P in the MBR sludge was released and eventually recovered as vivianite, achieving an overall P recovery efficiency of 61.9% from wastewater. The main pathways for P removal and recovery with iron dosing and acidogenic fermentation were determined by XANES analysis. The results showed that Fe-enhanced P removal with the MBR was mainly achieved by precipitation as ferric phosphate (24.2%) and adsorption onto hydrous iron oxides (60.3%). During anaerobic fermentation, transition from Fe(III)-P to Fe(II)-P complex occurred in the sludge, leading to Fe(II) dissolution and P release. The pH decrease and microbial Fe reduction were crucial conditions for effective P extraction from the MBR sludge. The efficiency of P recovery increased with an increase in the fermentation time and organic load and a decrease of pH in the solution.
AB - A new phosphorus (P) removal and recovery process that integrates an FeCl 3 -dosing, membrane bioreactor (MBR), and side-stream cofermentation was developed for wastewater treatment. The Fe and P species and their transformation mechanisms via aerobic and anaerobic conditions were investigated with X-ray absorption near edge structure (XANES) spectroscopy. In the new treatment system, 98.4% of the total P in domestic wastewater was removed and retained in activated sludge in the MBR. During the subsequent acidogenic cofermentation with food waste, P in the MBR sludge was released and eventually recovered as vivianite, achieving an overall P recovery efficiency of 61.9% from wastewater. The main pathways for P removal and recovery with iron dosing and acidogenic fermentation were determined by XANES analysis. The results showed that Fe-enhanced P removal with the MBR was mainly achieved by precipitation as ferric phosphate (24.2%) and adsorption onto hydrous iron oxides (60.3%). During anaerobic fermentation, transition from Fe(III)-P to Fe(II)-P complex occurred in the sludge, leading to Fe(II) dissolution and P release. The pH decrease and microbial Fe reduction were crucial conditions for effective P extraction from the MBR sludge. The efficiency of P recovery increased with an increase in the fermentation time and organic load and a decrease of pH in the solution.
UR - http://www.scopus.com/inward/record.url?scp=85058759010&partnerID=8YFLogxK
U2 - 10.1021/acs.est.8b03355
DO - 10.1021/acs.est.8b03355
M3 - Journal article
C2 - 30452241
AN - SCOPUS:85058759010
SN - 0013-936X
VL - 52
SP - 14119
EP - 14128
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 24
ER -