Phase sensitivity of hollow-core photonic bandgap fiber to internal gas pressure

Yingchun Cao, Fan Yang, Hoi Lut Ho, Wei Jin

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

Abstract

Phase sensitivity of the fundamental mode of hollow-core photonic bandgap fiber to gas pressure applied internally to its core is investigated. The measured phase sensitivity for a 95-cm-long fiber is 9.92 rad/kPa, over two orders of magnitude higher than that to external pressure. The large phase sensitivity is attributed mainly to the pressure-induced refractive index change of air inside the fiber core. Such an effect may be exploited for high sensitivity pressure sensing and biochemical and environmental process analysis involving pressure variations.
Original languageEnglish
Title of host publication23rd International Conference on Optical Fibre Sensors
PublisherSPIE
Volume9157
ISBN (Print)9781628411751
DOIs
Publication statusPublished - 1 Jan 2014
Event23rd International Conference on Optical Fibre Sensors - Santander, Spain
Duration: 2 Jun 20146 Jun 2014

Conference

Conference23rd International Conference on Optical Fibre Sensors
Country/TerritorySpain
CitySantander
Period2/06/146/06/14

Keywords

  • Hollow-core photonic bandgap fiber
  • Optical fiber sensor
  • Pressure sensor
  • Refractive index

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Phase sensitivity of hollow-core photonic bandgap fiber to internal gas pressure'. Together they form a unique fingerprint.

Cite this