Abstract
Personal identification using iris images has invited lots of attention in the literature and offered higher accuracy. However, the computational complexity in the feature extraction from the normalized iris images is still of key concern and further efforts are required to develop efficient feature extraction approaches. In this paper, we investigate a new approach for the efficient and effective extraction of iris features using localized Radon transforms. The feature extraction process exploits the orientation information from the local iris texture features using finite Radon transform. The dominant orientation from these Radon transform features is used to generate a binarized/compact feature representation. The similarity between two feature vectors is computed from the minimum matching distance that can account for the variations resulting from translation and rotation of the images. The feasibility of this approach is rigorously evaluated on two publically available iris image databases, i.e. IITD iris image database v1 and CASIA v3 iris image database. We also investigate the multi-scale analysis of iris images to enhance the performance. The experimental results presented in this paper are highly promising and suggest the computationally attractive alternative for the online iris identification.
Original language | English |
---|---|
Title of host publication | Proceedings - 2010 20th International Conference on Pattern Recognition, ICPR 2010 |
Pages | 2840-2843 |
Number of pages | 4 |
DOIs | |
Publication status | Published - 18 Nov 2010 |
Event | 2010 20th International Conference on Pattern Recognition, ICPR 2010 - Istanbul, Turkey Duration: 23 Aug 2010 → 26 Aug 2010 |
Conference
Conference | 2010 20th International Conference on Pattern Recognition, ICPR 2010 |
---|---|
Country/Territory | Turkey |
City | Istanbul |
Period | 23/08/10 → 26/08/10 |
ASJC Scopus subject areas
- Computer Vision and Pattern Recognition