Perovskite Solar Cell-Gated Organic Electrochemical Transistors for Flexible Photodetectors with Ultrahigh Sensitivity and Fast Response

Jiajun Song, Guanqi Tang, Jiupeng Cao, Hong Liu, Zeyu Zhao, Sophie Griggs, Anneng Yang, Naixiang Wang, Haiyang Cheng, Chun Ki Liu, Iain McCulloch, Feng Yan

Research output: Journal article publicationJournal articleAcademic researchpeer-review

25 Citations (Scopus)

Abstract

Photodetectors (PDs) are the building block of various imaging and sensing applications. However, commercially available PDs based on crystalline inorganic semiconductors cannot meet the requirements of emerging wearable/implantable applications due to their rigidity and fragility, which creates the need for flexible devices. Here, a high-performance flexible PD is presented by gating an organic electrochemical transistor (OECT) with a perovskite solar cell. Due to the ultrahigh transconductance of the OECT, the device demonstrates a high gain of ≈106, a fast response time of 67 µs and an ultrahigh detectivity of 6.7 × 1017 Jones to light signals under a low working voltage (≤0.6 V). Thanks to the ultrahigh sensitivity and fast response, the device can track photoplethysmogram signals and peripheral oxygen saturation under ambient light and even provide contactless remote sensing, offering a low-power and convenient way for continuous vital signs monitoring. This work offers a novel strategy for realizing high-performance flexible PDs that are promising for low-power, user-friendly and wearable optoelectronics.

Original languageEnglish
Article number2207763
JournalAdvanced Materials
Volume35
Issue number6
DOIs
Publication statusPublished - 14 Nov 2022

Keywords

  • contactless sensing
  • flexible photodetectors
  • organic electrochemical transistors
  • perovskite solar cells
  • wearable electronics

ASJC Scopus subject areas

  • General Materials Science
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Perovskite Solar Cell-Gated Organic Electrochemical Transistors for Flexible Photodetectors with Ultrahigh Sensitivity and Fast Response'. Together they form a unique fingerprint.

Cite this