Permeable, three-dimensional integrated electronic skins with stretchable hybrid liquid metal solders

Qiuna Zhuang, Kuanming Yao, Chi Zhang, Xian Song, Jingkun Zhou, Yufei Zhang, Qiyao Huang, Yizhao Zhou, Xinge Yu, Zijian Zheng

Research output: Journal article publicationJournal articleAcademic researchpeer-review

64 Citations (Scopus)

Abstract

The development of wearable and on-skin electronics requires high-density stretchable electronic systems that can conform to soft tissue, operate continuously and provide long-term biocompatibility. Most stretchable electronic systems have low-density integration and are wired with external printed circuit boards, which limits functionality, deteriorates user experience and impedes long-term usability. Here we report an intrinsically permeable, three-dimensional integrated electronic skin. The system combines high-density inorganic electronic components with organic stretchable fibrous substrates using three-dimensional patterned, multilayered liquid metal circuits and stretchable hybrid liquid metal solder. The electronic skin exhibits high softness, durability, fabric-like permeability to air and moisture and sufficient biocompatibility for on-skin attachment for a week. We use the platform to create wireless, battery-powered and battery-free skin-attached bioelectronic systems that offer complex system-level functions, including the stable sensing of biosignals, signal processing and analysis, electrostimulation and wireless communication.

Original languageEnglish
Pages (from-to)598-609
Number of pages12
JournalNature Electronics
Volume7
Issue number7
DOIs
Publication statusPublished - 1 Jul 2024

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Permeable, three-dimensional integrated electronic skins with stretchable hybrid liquid metal solders'. Together they form a unique fingerprint.

Cite this