Performance-based seismic design of self-centering steel frames with SMA-based braces

Can Xing Qiu, Songye Zhu

Research output: Journal article publicationJournal articleAcademic researchpeer-review

115 Citations (Scopus)

Abstract

Superelastic SMA cables can completely recover deformation upon unloading, dissipate energy without residual deformation, and provide SC capability to the frames. The presented PBSD method is essentially a modified version of the performance-based plastic design with extra consideration of some special features of SMA-based braced frames (SMABFs). Four six-story concentrically braced frames with SMA-based braces (SMABs) are designed as examples to illustrate the efficacy of the proposed design method. In particular, the variability in the hysteretic parameters of SMAs, such as the phase-transformation stiffness ratio and the energy dissipation factor, is considered in the PBSD method. Accordingly, four SMABFs are designed with different combinations of these hysteretic parameters. The seismic performance of the designed frames is examined at various seismic intensity levels. Results of nonlinear time-history analyses indicate that the four SMABFs can successfully achieve the prescribed performance objectives at three seismic hazard levels. The comparisons among the designed frames reveal that the SMABs with greater hysteretic parameters result in a more economical design in terms of the consumption of steel and SMA materials.
Original languageEnglish
Pages (from-to)67-82
Number of pages16
JournalEngineering Structures
Volume130
DOIs
Publication statusPublished - 1 Jan 2017

Keywords

  • Performance-based plastic design
  • Performance-based seismic design
  • Self-centering
  • Shape memory alloy (SMA)
  • Steel braced frame
  • Superelasticity

ASJC Scopus subject areas

  • Civil and Structural Engineering

Cite this