TY - GEN
T1 - Performance analysis of SDMA in multicell wireless networks
AU - Li, Chang
AU - Zhang, Jun
AU - Letaief, K. B.
PY - 2013/1/1
Y1 - 2013/1/1
N2 - Multi-antenna transmission, or MIMO, is a major enabling technique for broadband cellular networks. The current implementation, however, is mainly for the point-to-point link, and its potential for Space-Division Multiple Access (SDMA) has not been fully exploited. In this paper, we will analytically evaluate the performance of SDMA in multicell networks based on a spatial random network model, where both the base stations (BSs) and users are modeled as two independent Poisson point processes. The main difficulty is the evaluation of the interference distribution, for which we propose a novel BS grouping approach that leads to a closed-form expression for the network area spectral efficiency. We find that the number of active users (U) served with SDMA is critical, as it affects the spatial multiplexing gain, the aggregated interference, and the diversity gain for each user. The optimal value of U can be selected based on our analytical result, with which SDMA is shown to outperform both the single-user beamforming and full-SDMA for which U is the same as the number of BS antennas. In particular, it is shown that the performance gain of SDMA is higher when the BS density is relatively small compared to the user density, but the optimal value of U is almost the same for different scenarios, which is close to half of the BS antenna number.
AB - Multi-antenna transmission, or MIMO, is a major enabling technique for broadband cellular networks. The current implementation, however, is mainly for the point-to-point link, and its potential for Space-Division Multiple Access (SDMA) has not been fully exploited. In this paper, we will analytically evaluate the performance of SDMA in multicell networks based on a spatial random network model, where both the base stations (BSs) and users are modeled as two independent Poisson point processes. The main difficulty is the evaluation of the interference distribution, for which we propose a novel BS grouping approach that leads to a closed-form expression for the network area spectral efficiency. We find that the number of active users (U) served with SDMA is critical, as it affects the spatial multiplexing gain, the aggregated interference, and the diversity gain for each user. The optimal value of U can be selected based on our analytical result, with which SDMA is shown to outperform both the single-user beamforming and full-SDMA for which U is the same as the number of BS antennas. In particular, it is shown that the performance gain of SDMA is higher when the BS density is relatively small compared to the user density, but the optimal value of U is almost the same for different scenarios, which is close to half of the BS antenna number.
KW - Cellular networks
KW - Poisson point process
KW - SDMA
UR - http://www.scopus.com/inward/record.url?scp=84904105073&partnerID=8YFLogxK
U2 - 10.1109/GLOCOM.2013.6831676
DO - 10.1109/GLOCOM.2013.6831676
M3 - Conference article published in proceeding or book
AN - SCOPUS:84904105073
SN - 9781479913534
T3 - GLOBECOM - IEEE Global Telecommunications Conference
SP - 3867
EP - 3872
BT - 2013 IEEE Global Communications Conference, GLOBECOM 2013
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2013 IEEE Global Communications Conference, GLOBECOM 2013
Y2 - 9 December 2013 through 13 December 2013
ER -