PCA-based spatially adaptive denoising of CFA images for single-sensor digital cameras

Lei Zhang, Rastislav Lukac, Xiaolin Wu, Dapeng Zhang

Research output: Journal article publicationJournal articleAcademic researchpeer-review

132 Citations (Scopus)

Abstract

Single-sensor digital color cameras use a process called color demosaicking to produce full color images from the data captured by a color filter array (CFA). The quality of demosaicked images is degraded due to the sensor noise introduced during the image acquisition process. The conventional solution to combating CFA sensor noise is demosaicking first, followed by a separate denoising processing. This strategy will generate many noise-caused color artifacts in the demosaicking process, which are hard to remove in the denoising process. Few denoising schemes that work directly on the CFA images have been presented because of the difficulties arisen from the red, green and blue interlaced mosaic pattern, yet a well designed "denoising first and demosaicking later" scheme can have advantages such as less noise-caused color artifacts and cost-effective implementation. This paper presents a principle component analysis (PCA) based spatially-adaptive denoising algorithm, which works directly on the CFA data using a supporting window to analyze the local image statistics. By exploiting the spatial and spectral correlations existed in the CFA image, the proposed method can effectively suppress noise while preserving color edges and details. Experiments using both simulated and real CFA images indicate that the proposed scheme outperforms many existing approaches, including those sophisticated demosaicking and denoising schemes, in terms of both objective measurement and visual evaluation.
Original languageEnglish
Pages (from-to)797-812
Number of pages16
JournalIEEE Transactions on Image Processing
Volume18
Issue number4
DOIs
Publication statusPublished - 10 Mar 2009

Keywords

  • Adaptive denoising
  • Bayer pattern
  • Color filter array (CFA)
  • Demosaicking
  • Principle component analysis (PCA)

ASJC Scopus subject areas

  • Software
  • Computer Graphics and Computer-Aided Design

Cite this