Pay attention to devils: A photometric stereo network for better details

Yakun Ju, Kin Man Lam, Yang Chen, Lin Qi, Junyu Dong

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

32 Citations (Scopus)

Abstract

We present an attention-weighted loss in a photometric stereo neural network to improve 3D surface recovery accuracy in complex-structured areas, such as edges and crinkles, where existing learning-based methods often failed. Instead of using a uniform penalty for all pixels, our method employs the attention-weighted loss learned in a self-supervise manner for each pixel, avoiding blurry reconstruction result in such difficult regions. The network first estimates a surface normal map and an adaptive attention map, and then the latter is used to calculate a pixel-wise attention-weighted loss that focuses on complex regions. In these regions, the attention-weighted loss applies higher weights of the detail-preserving gradient loss to produce clear surface reconstructions. Experiments on real datasets show that our approach significantly outperforms traditional photometric stereo algorithms and state-of-the-art learning-based methods.

Original languageEnglish
Title of host publicationProceedings of the 29th International Joint Conference on Artificial Intelligence, IJCAI 2020
EditorsChristian Bessiere
PublisherInternational Joint Conferences on Artificial Intelligence
Pages694-700
Number of pages7
ISBN (Electronic)9780999241165
Publication statusPublished - Jan 2021
Event29th International Joint Conference on Artificial Intelligence, IJCAI 2020 - Yokohama, Japan
Duration: 1 Jan 2021 → …

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2021-January
ISSN (Print)1045-0823

Conference

Conference29th International Joint Conference on Artificial Intelligence, IJCAI 2020
Country/TerritoryJapan
CityYokohama
Period1/01/21 → …

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Pay attention to devils: A photometric stereo network for better details'. Together they form a unique fingerprint.

Cite this