Parameterized convergence bounds for volterra series expansion of NARX models

Zhenlong Xiao, Xingjian Jing, Li Cheng

Research output: Journal article publicationJournal articleAcademic researchpeer-review

19 Citations (Scopus)

Abstract

Evaluation of the convergence bound in the frequency domain for Volterra series expansion of nonlinear systems described by NARX models is studied. This provides new convergence criteria under which the nonlinear system of interest has a convergent Volterra series expansion, and the new criteria are expressed explicitly in terms of the input magnitude, model parameters, and frequency variable. The new convergence criteria are firstly developed for harmonic inputs and then extended to multi-tone and general input cases. Based on the theoretical analysis, a general procedure for calculating the convergence bound is provided. The results provide a fundamental basis for nonlinear signal processing using the Volterra series theory.
Original languageEnglish
Article number6576853
Pages (from-to)5026-5038
Number of pages13
JournalIEEE Transactions on Signal Processing
Volume61
Issue number20
DOIs
Publication statusPublished - 30 Sept 2013

Keywords

  • Convergence criteria
  • frequency domain
  • NARX models
  • Volterra series

ASJC Scopus subject areas

  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Parameterized convergence bounds for volterra series expansion of NARX models'. Together they form a unique fingerprint.

Cite this