TY - GEN
T1 - PAMPC: Perception-Aware Model Predictive Control for Quadrotors
AU - Falanga, Davide
AU - Foehn, Philipp
AU - Lu, Peng
AU - Scaramuzza, Davide
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/10
Y1 - 2018/10
N2 - We present the first perception-aware model predictive control framework for quadrotors that unifies control and planning with respect to action and perception objectives. Our framework leverages numerical optimization to compute trajectories that satisfy the system dynamics and require control inputs within the limits of the platform. Simultaneously, it optimizes perception objectives for robust and reliable sensing by maximizing the visibility of a point of interest and minimizing its velocity in the image plane. Considering both perception and action objectives for motion planning and control is challenging due to the possible conflicts arising from their respective requirements. For example, for a quadrotor to track a reference trajectory, it needs to rotate to align its thrust with the direction of the desired acceleration. However, the perception objective might require to minimize such rotation to maximize the visibility of a point of interest. A model-based optimization framework, able to consider both perception and action objectives and couple them through the system dynamics, is therefore necessary. Our perception-aware model predictive control framework works in a receding-horizon fashion by iteratively solving a non-linear optimization problem. It is capable of running in real-time, fully onboard our lightweight, small-scale quadrotor using a low-power ARM computer, together with a visual-inertial odometry pipeline. We validate our approach in experiments demonstrating (I) the conflict between perception and action objectives, and (II) improved behavior in extremely challenging lighting conditions.
AB - We present the first perception-aware model predictive control framework for quadrotors that unifies control and planning with respect to action and perception objectives. Our framework leverages numerical optimization to compute trajectories that satisfy the system dynamics and require control inputs within the limits of the platform. Simultaneously, it optimizes perception objectives for robust and reliable sensing by maximizing the visibility of a point of interest and minimizing its velocity in the image plane. Considering both perception and action objectives for motion planning and control is challenging due to the possible conflicts arising from their respective requirements. For example, for a quadrotor to track a reference trajectory, it needs to rotate to align its thrust with the direction of the desired acceleration. However, the perception objective might require to minimize such rotation to maximize the visibility of a point of interest. A model-based optimization framework, able to consider both perception and action objectives and couple them through the system dynamics, is therefore necessary. Our perception-aware model predictive control framework works in a receding-horizon fashion by iteratively solving a non-linear optimization problem. It is capable of running in real-time, fully onboard our lightweight, small-scale quadrotor using a low-power ARM computer, together with a visual-inertial odometry pipeline. We validate our approach in experiments demonstrating (I) the conflict between perception and action objectives, and (II) improved behavior in extremely challenging lighting conditions.
UR - http://www.scopus.com/inward/record.url?scp=85062965647&partnerID=8YFLogxK
U2 - 10.1109/IROS.2018.8593739
DO - 10.1109/IROS.2018.8593739
M3 - Conference article published in proceeding or book
AN - SCOPUS:85062965647
T3 - IEEE International Conference on Intelligent Robots and Systems
SP - 5200
EP - 5207
BT - 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018
Y2 - 1 October 2018 through 5 October 2018
ER -