Overall water splitting by graphdiyne-exfoliated and -sandwiched layered double-hydroxide nanosheet arrays

Lan Hui, Yurui Xue, Bolong Huang, Huidi Yu, Chao Zhang, Danyan Zhang, Dianzeng Jia, Yingjie Zhao, Yongjun Li, Huibiao Liu, Yuliang Li

Research output: Journal article publicationJournal articleAcademic researchpeer-review

306 Citations (Scopus)

Abstract

It is of great urgency to develop efficient, cost-effective, stable and industrially applicable electrocatalysts for renewable energy systems. But there are still few candidate materials. Here we show a bifunctional electrocatalyst, comprising graphdiyne-exfoliated and -sandwiched iron/cobalt layered double-hydroxide nanosheet arrays grown on nickel foam, for the oxygen and hydrogen evolution reactions. Theoretical and experimental data revealed that the charge transport kinetics of the structure were superior to iron/cobalt layered double-hydroxide, a prerequisite for improved electrocatalytic performance. The incorporation with graphdiyne increased the number of catalytically active sites and prevented corrosion, leading to greatly enhanced electrocatalytic activity and stability for oxygen evolution reaction, hydrogen evolution reaction, as well as overall water splitting. Our results suggest that the use of graphdiyne might open up new pathways for the design and fabrication of earth-abundant, efficient, functional, and smart electrode materials with practical applications.

Original languageEnglish
Article number5309
JournalNature Communications
Volume9
Issue number1
DOIs
Publication statusPublished - 1 Dec 2018

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Overall water splitting by graphdiyne-exfoliated and -sandwiched layered double-hydroxide nanosheet arrays'. Together they form a unique fingerprint.

Cite this