Optofluidic Resonance of a Transparent Liquid Jet Excited by a Continuous Wave Laser

H. Liu, Z. Wang, L. Gao, Y. Huang, H. Tang, X. Zhao, W. Deng

Research output: Journal article publicationJournal articleAcademic researchpeer-review

Abstract

We report a new optofluidic resonating phenomenon that naturally links the optical radiation pressure, total internal reflection, capillary wave, and Rayleigh-Plateau instability together. When a transparent liquid jet is radiated by a focused continuous wave laser beam, the highly ordered periodic jet breakup is unexpectedly triggered and maintained. The capillary wave enables the liquid-gas interface to serve as a rotating mirror reflecting the laser beam in a wide range of angles, including the critical angle for total internal reflection. The liquid jet acts as an optical waveguide to periodically transmit the laser beam to the upstream of the jet. The periodic optical beam transmittance inside the liquid jet exerts time-dependent optical pressure to the jet that triggers the Rayleigh-Plateau instability. The jet breakup process locks in at the frequency corresponding to the peak growth rate of the Rayleigh-Plateau instability of the liquid jet, which agrees with the prediction from the dispersion relation of a traveling liquid jet.

Original languageEnglish
Article number244502
JournalPhysical Review Letters
Volume127
Issue number24
DOIs
Publication statusPublished - 10 Dec 2021

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this