Abstract
Previous studies have demonstrated the energy- and water-saving potentials of showering facilities in residential buildings. However, the prospect of public showering places where multiple showerheads usually worked together according to their opening hours has often been overlooked and rarely investigated. This study measured the water flow rate in a water supply pipe to understand the water-use patterns and water consumption of showering facilities in a swimming pool. The measurements were carried out on typical cold and warm days. The results showed that the average water consumption was 50.5 L/person in December (T = 19.7 °C) and 38.6 L/person in April (T = 24.5 °C). The fluctuation of the water flow rate demonstrated a water demand pattern for the showering facilities, where the maximum water flow rate was more than twice the average level, indicating inefficient working modes of the water supply pump. To improve the current situation, an appropriately sized water tank was suggested to be installed, which could ensure a more stable water flow rate in the main supply pipe, enhancing the water supply system efficiency and saving energy for the water pump. These results contribute to establishing the design data for optimizing water tank design in swimming pools or similar buildings with public showering demand and illustrate the energy-saving potential of water supply systems in showering facilities. Nevertheless, the results of this study are only based on theoretical calculations. More comprehensive field studies with a water tank are required to confirm these findings and better elucidate the effects.
Original language | English |
---|---|
Article number | 2083 |
Journal | Water |
Volume | 15 |
Issue number | 11 |
DOIs | |
Publication status | Published - 31 May 2023 |